Suppr超能文献

在类液态固体表面上对 COL1 蛋白进行生物共轭,以研究肿瘤入侵动力学。

Bioconjugation of COL1 protein on liquid-like solid surfaces to study tumor invasion dynamics.

机构信息

Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, College of Medicine University of Florida, Gainesville, Florida 3261.

Department of Chemistry, College of Liberal Arts and Sciences, College of Medicine University of Florida, Gainesville, Florida 3261.

出版信息

Biointerphases. 2023 Mar 10;18(2):021001. doi: 10.1116/6.0002083.

Abstract

Tumor invasion is likely driven by the product of intrinsic and extrinsic stresses, reduced intercellular adhesion, and reciprocal interactions between the cancer cells and the extracellular matrix (ECM). The ECM is a dynamic material system that is continuously evolving with the tumor microenvironment. Although it is widely reported that cancer cells degrade the ECM to create paths for migration using membrane-bound and soluble enzymes, other nonenzymatic mechanisms of invasion are less studied and not clearly understood. To explore tumor invasion that is independent of enzymatic degradation, we have created an open three-dimensional (3D) microchannel network using a novel bioconjugated liquid-like solid (LLS) medium to mimic both the tortuosity and the permeability of a loose capillary-like network. The LLS is made from an ensemble of soft granular microgels, which provides an accessible platform to investigate the 3D invasion of glioblastoma (GBM) tumor spheroids using in situ scanning confocal microscopy. The surface conjugation of the LLS microgels with type 1 collagen (COL1-LLS) enables cell adhesion and migration. In this model, invasive fronts of the GBM microtumor protruded into the proximal interstitial space and may have locally reorganized the surrounding COL1-LLS. Characterization of the invasive paths revealed a super-diffusive behavior of these fronts. Numerical simulations suggest that the interstitial space guided tumor invasion by restricting available paths, and this physical restriction is responsible for the super-diffusive behavior. This study also presents evidence that cancer cells utilize anchorage-dependent migration to explore their surroundings, and geometrical cues guide 3D tumor invasion along the accessible paths independent of proteolytic ability.

摘要

肿瘤侵袭可能是由内在和外在压力的产物、细胞间黏附力的降低以及癌细胞与细胞外基质(ECM)之间的相互作用驱动的。ECM 是一个动态的材料系统,它随着肿瘤微环境的变化而不断演变。尽管广泛报道癌细胞通过膜结合和可溶性酶降解 ECM 为迁移创造路径,但其他非酶促侵袭机制的研究较少,也不太清楚。为了探索不依赖于酶降解的肿瘤侵袭,我们使用一种新型的生物共轭液态固体(LLS)介质创建了一个开放的三维(3D)微通道网络,以模拟疏松毛细血管样网络的曲折度和通透性。LLS 由一组软颗粒微凝胶组成,为使用原位扫描共焦显微镜研究脑胶质瘤(GBM)肿瘤球体的 3D 侵袭提供了一个易于接近的平台。LLS 微凝胶与 I 型胶原(COL1-LLS)的表面共轭使细胞能够黏附和迁移。在这个模型中,GBM 微肿瘤的侵袭前沿突入到近端的细胞间隙中,并可能局部重组了周围的 COL1-LLS。对侵袭路径的特征分析揭示了这些前沿具有超扩散行为。数值模拟表明,细胞间隙通过限制可用路径来引导肿瘤侵袭,这种物理限制是导致超扩散行为的原因。这项研究还提供了证据表明,癌细胞利用依赖于锚定的迁移来探索其周围环境,并且几何线索引导 3D 肿瘤沿着可接近的路径进行侵袭,而不依赖于蛋白水解能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d89e/10008099/0c2c5828dd03/BJIOBN-000018-021001_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验