Suppr超能文献

能否预测新冠疫情?哈萨克斯坦感染传播的随机系统动力学模型。

Is It Possible to Predict COVID-19? Stochastic System Dynamic Model of Infection Spread in Kazakhstan.

作者信息

Koichubekov Berik, Takuadina Aliya, Korshukov Ilya, Turmukhambetova Anar, Sorokina Marina

机构信息

Department of Informatics and Biostatistics, Karaganda Medical University, Gogol St. 40, Karaganda 100008, Kazakhstan.

Institute of Life Sciences, Karaganda Medical University, Gogol St. 40, Karaganda 100008, Kazakhstan.

出版信息

Healthcare (Basel). 2023 Mar 3;11(5):752. doi: 10.3390/healthcare11050752.

Abstract

BACKGROUND

Since the start of the COVID-19 pandemic, scientists have begun to actively use models to determine the epidemiological characteristics of the pathogen. The transmission rate, recovery rate and loss of immunity to the COVID-19 virus change over time and depend on many factors, such as the seasonality of pneumonia, mobility, testing frequency, the use of masks, the weather, social behavior, stress, public health measures, etc. Therefore, the aim of our study was to predict COVID-19 using a stochastic model based on the system dynamics approach.

METHOD

We developed a modified SIR model in AnyLogic software. The key stochastic component of the model is the transmission rate, which we consider as an implementation of Gaussian random walks with unknown variance, which was learned from real data.

RESULTS

The real data of total cases turned out to be outside the predicted minimum-maximum interval. The minimum predicted values of total cases were closest to the real data. Thus, the stochastic model we propose gives satisfactory results for predicting COVID-19 from 25 to 100 days. The information we currently have about this infection does not allow us to make predictions with high accuracy in the medium and long term.

CONCLUSIONS

In our opinion, the problem of the long-term forecasting of COVID-19 is associated with the absence of any educated guess regarding the dynamics of in the future. The proposed model requires improvement with the elimination of limitations and the inclusion of more stochastic parameters.

摘要

背景

自新冠疫情开始以来,科学家们已开始积极运用模型来确定病原体的流行病学特征。新冠病毒的传播率、康复率和免疫力丧失情况会随时间变化,且取决于诸多因素,如肺炎的季节性、流动性、检测频率、口罩使用情况、天气、社会行为、压力、公共卫生措施等。因此,我们研究的目的是基于系统动力学方法,使用随机模型预测新冠疫情。

方法

我们在AnyLogic软件中开发了一个改进的SIR模型。该模型的关键随机成分是传播率,我们将其视为具有未知方差的高斯随机游走的一种实现,该方差是从实际数据中学习得到的。

结果

实际的总病例数超出了预测的最小 - 最大区间。总病例数的预测最小值最接近实际数据。因此,我们提出的随机模型在预测25至100天的新冠疫情时给出了令人满意的结果。我们目前所掌握的关于这种感染的信息不允许我们在中长期进行高精度预测。

结论

我们认为,新冠疫情的长期预测问题与未来缺乏关于[此处原文缺失相关内容]动态的任何有根据的猜测有关。所提出的模型需要改进,以消除局限性并纳入更多随机参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0368/10000940/ba4d4f7febb9/healthcare-11-00752-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验