Research Center of Advanced Catalytic Materials and Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
Molecules. 2023 Mar 6;28(5):2399. doi: 10.3390/molecules28052399.
In this study, a combination of the porous carbon (PCN), montmorillonite (MMT), and TiO was synthesized into a composite immobilized Pd metal catalyst (TiO-MMT/PCN@Pd) with effective synergism improvements in catalytic performance. The successful TiO-pillaring modification for MMT, derivation of carbon from the biopolymer of chitosan, and immobilization of Pd species for the prepared TiO-MMT/PCN@Pd nanocomposites were confirmed using a combined characterization with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N adsorption-desorption isotherms, high-resolution transition electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. It was shown that the combination of PCN, MMT, and TiO as a composite support for the stabilization of the Pd catalysts could synergistically improve the adsorption and catalytic properties. The resultant TiO-MMT/PCN@Pd showed a high surface area of 108.9 m/g. Furthermore, it exhibited moderate to excellent activity (59-99% yield) and high stability (recyclable 19 times) in the liquid-solid catalytic reactions, such as the Sonogashira reactions of aryl halides (I, Br) with terminal alkynes in organic solutions. The positron annihilation lifetime spectroscopy (PALS) characterization sensitively detected the development of sub-nanoscale microdefects in the catalyst after long-term recycling service. This study provided direct evidence for the formation of some larger-sized microdefects during sequential recycling, which would act as leaching channels for loaded molecules, including active Pd species.
在这项研究中,将多孔碳 (PCN)、蒙脱石 (MMT) 和 TiO 组合成一种复合固定钯金属催化剂 (TiO-MMT/PCN@Pd),以有效协同提高催化性能。成功地对 MMT 进行了 TiO 插层修饰,从壳聚糖的生物聚合物中衍生出碳,并对制备的 TiO-MMT/PCN@Pd 纳米复合材料进行了 Pd 物种的固定化,这一点通过 X 射线衍射 (XRD)、傅里叶变换红外光谱 (FTIR)、N 吸附-脱附等温线、高分辨率透射电子显微镜 (HRTEM)、X 射线光电子能谱 (XPS) 和拉曼光谱等综合表征得到了证实。结果表明,PCN、MMT 和 TiO 的组合作为 Pd 催化剂的复合载体可以协同提高吸附和催化性能。所得的 TiO-MMT/PCN@Pd 具有 108.9 m/g 的高表面积。此外,它在液-固催化反应中表现出较高的活性 (59-99%产率) 和高稳定性 (可重复使用 19 次),如芳基卤化物 (I、Br) 与末端炔烃在有机溶剂中的 Sonogashira 反应。正电子湮没寿命谱 (PALS) 特性敏感地检测到在长期循环使用后催化剂中亚纳米级微缺陷的发展。这项研究为在连续循环过程中形成一些较大尺寸的微缺陷提供了直接证据,这些微缺陷将作为负载分子(包括活性 Pd 物种)的浸出通道。