Heyn Christian, Ranasinghe Leonardo, Deneke Kristian, Alshaikh Ahmed, Duque Carlos A, Hansen Wolfgang
Center for Hybrid Nanostructures (CHyN), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín AA 1226, Colombia.
Nanomaterials (Basel). 2023 Feb 25;13(5):857. doi: 10.3390/nano13050857.
Strain-free GaAs cone-shell quantum structures (CSQS) with widely tunable wave functions (WF) are fabricated using local droplet etching (LDE) during molecular beam epitaxy (MBE). During MBE, Al droplets are deposited on an AlGaAs surface, which then drill low-density (about 1 × 107 cm) nanoholes with adjustable shape and size. Subsequently, the holes are filled with GaAs to form CSQS, where the size can be adjusted by the amount of GaAs deposited for hole filling. An electric field is applied in growth direction to tune the WF in a CSQS. The resulting highly asymmetric exciton Stark shift is measured using micro-photoluminescence. Here, the unique shape of the CSQS allows a large charge-carrier separation and, thus, a strong Stark shift of up to more than 16 meV at a moderate field of 65 kV/cm. This corresponds to a very large polarizability of 8.6 × 10-6 eVkV -2 cm. In combination with simulations of the exciton energy, the Stark shift data allow the determination of the CSQS size and shape. Simulations of the exciton-recombination lifetime predict an elongation up to factor of 69 for the present CSQSs, tunable by the electric field. In addition, the simulations indicate the field-induced transformation of the hole WF from a disk into a quantum ring with a tunable radius from about 10 nm up to 22.5 nm.
在分子束外延(MBE)过程中,通过局部液滴蚀刻(LDE)制备了具有广泛可调波函数(WF)的无应变砷化镓锥壳量子结构(CSQS)。在MBE过程中,铝液滴沉积在AlGaAs表面,然后钻出形状和尺寸可调的低密度(约1×10⁷ cm⁻²)纳米孔。随后,用砷化镓填充这些孔以形成CSQS,其尺寸可通过用于填充孔的砷化镓沉积量来调节。在生长方向上施加电场以调节CSQS中的波函数。使用微光致发光测量由此产生的高度不对称激子斯塔克位移。在此,CSQS的独特形状允许较大的电荷载流子分离,因此,在65 kV/cm的中等场强下,斯塔克位移高达16 meV以上。这对应于8.6×10⁻⁶ eV kV⁻² cm的非常大的极化率。结合激子能量模拟,斯塔克位移数据允许确定CSQS的尺寸和形状。激子复合寿命模拟预测,对于当前的CSQS,伸长率可达69倍,可由电场调节。此外,模拟表明,电场诱导空穴波函数从盘状转变为量子环,其半径可调,范围约为10 nm至22.5 nm。