Alptekin Fikret Muge, Dunford Nurhan Turgut, Celiktas Melih Soner
Ege University, Solar Energy Institute, Izmir 35040, Turkey.
Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States.
ACS Omega. 2023 Feb 22;8(9):8779-8790. doi: 10.1021/acsomega.3c00024. eCollection 2023 Mar 7.
Carbon derived from various biomass sources has been evaluated as support material for thermal energy storage systems. However, process optimization of -derived carbon to be used for encapsulating phase change materials has not been reported to date. In this study, process optimization to evaluate the effects of selected operation parameters of pyrolysis time, temperature, and biomass:catalyst mass ratio on the surface area and pore volume of produced carbon is conducted using response surface methodology. In the process, ZnCl is used as a catalyst to promote high pore volume and area formation. Two sets of optimum conditions with different pyrolysis operation parameters in order to produce carbons with the highest pore area and volume are determined as 614 °C, 53 min, and 1:2 biomass to catalyst ratio and 722 °C, 77 min, and 1:4 biomass to catalyst ratio with 1415.4 m/g and 0.748 cm/g and 1499.8 m/g and 1.443 cm/g total pore volume, respectively. Carbon material produced at 614 °C exhibits mostly micro- and mesosized pores, while carbon obtained at 722 °C comprises mostly of meso- and macroporous structures. Findings of this study demonstrate the significance of process optimization for designing porous carbon material to be used in thermal and electrochemical energy storage systems.
源自各种生物质来源的碳已被评估为热能存储系统的支撑材料。然而,迄今为止,尚未有关于用于封装相变材料的衍生碳的工艺优化的报道。在本研究中,采用响应面方法进行工艺优化,以评估热解时间、温度和生物质与催化剂质量比等选定操作参数对所制备碳的表面积和孔体积的影响。在此过程中,使用ZnCl作为催化剂以促进高孔体积和面积的形成。确定了两组具有不同热解操作参数的最佳条件,以便生产具有最高孔面积和体积的碳,分别为614℃、53分钟和生物质与催化剂比例为1:2,以及722℃、77分钟和生物质与催化剂比例为1:4,总孔体积分别为1415.4m²/g和0.748cm³/g以及1499.8m²/g和1.443cm³/g。在614℃下制备的碳材料主要呈现微孔和中孔,而在722℃下获得的碳主要由中孔和大孔结构组成。本研究结果证明了工艺优化对于设计用于热和电化学储能系统的多孔碳材料的重要性。