Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
J Appl Clin Med Phys. 2023 Apr;24(4):e13960. doi: 10.1002/acm2.13960. Epub 2023 Mar 13.
To quantify the potential error in outputs for flattening filter free (FFF) beams associated with use of a lead foil in beam quality determination per the addendum protocol for TG-51, we examined differences in measurements of the beam quality conversion factor k when using or not using lead foil.
Two FFF beams, a 6 MV FFF and a 10 MV FFF, were calibrated on eight Varian TrueBeams and two Elekta Versa HD linear accelerators (linacs) according to the TG-51 addendum protocol by using Farmer ionization chambers [TN 30013 (PTW) and SNC600c (Sun Nuclear)] with traceable absorbed dose-to-water calibrations. In determining k , the percentage depth-dose at 10 cm [PDD(10)] was measured with 10×10 cm field size at 100 cm source-to-surface distance (SSD). PDD(10) values were measured either with a 1 mm lead foil positioned in the path of the beam [%dd(10) ] or with omission of a lead foil [%dd(10)]. The %dd(10)x values were then calculated and the k factors determined by using the empirical fit equation in the TG-51 addendum for the PTW 30013 chambers. A similar equation was used to calculate k for the SNC600c chamber, with the fitting parameters taken from a very recent Monte Carlo study. The differences in k factors were compared for with lead foil vs. without lead foil.
Differences in %dd(10)x with lead foil and with omission of lead foil were 0.9 ± 0.2% for the 6 MV FFF beam and 0.6 ± 0.1% for the 10 MV FFF beam. Differences in k values with lead foil and with omission of lead foil were -0.1 ± 0.02% for the 6 MV FFF and -0.1 ± 0.01% for the 10 MV FFF beams.
With evaluation of the lead foil role in determination of the k factor for FFF beams. Our results suggest that the omission of lead foil introduces approximately 0.1% of error for reference dosimetry of FFF beams on both TrueBeam and Versa platforms.
根据 TG-51 附录协议,通过使用附加协议中的附加协议来确定束质转换因子 k 时,量化使用或不使用铅箔时,FFF 束的输出潜在误差。我们检查了在两种 FFF 束(6 MV FFF 和 10 MV FFF)中使用或不使用铅箔时测量 k 时的差异。
根据 TG-51 附录协议,通过使用经溯源的水吸收剂量校准的 Farmer 电离室 [TN 30013(PTW)和 SNC600c(Sun Nuclear)],在 8 台瓦里安 TrueBeam 和 2 台 Elekta Versa HD 直线加速器(linac)上对两种 FFF 束进行校准。在确定 k 时,使用 10×10 cm 射野在 100 cm 源皮距(SSD)处测量 10 cm 处的百分深度剂量 [PDD(10)]。要么在束流路径中放置 1 毫米铅箔测量 PDD(10)值[%dd(10)],要么省略铅箔测量 PDD(10)值 [%dd(10)]。然后计算 %dd(10)x 值,并使用 TG-51 附录中针对 PTW 30013 室的经验拟合方程确定 k 因子。使用非常新的蒙特卡罗研究中的拟合参数,使用类似的方程计算 SNC600c 室的 k 因子。使用经验拟合方程。在使用和不使用铅箔的情况下,对于 6 MV FFF 束,k 因子的差异为 0.9±0.2%,对于 10 MV FFF 束,k 因子的差异为 0.6±0.1%。在使用和不使用铅箔的情况下,对于 6 MV FFF 束,k 因子的差异为-0.1±0.02%,对于 10 MV FFF 束,k 因子的差异为-0.1±0.01%。
通过评估铅箔在确定 FFF 束 k 因子中的作用,我们的结果表明,在 TrueBeam 和 Versa 平台上,对于 FFF 束的参考剂量测量,省略铅箔会引入约 0.1%的误差。