Department of Medical Engineering, Faculty of Health Sciences, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, Fukuoka, 815-8510, Japan.
Sci Rep. 2023 Mar 13;13(1):4162. doi: 10.1038/s41598-023-31225-3.
In this study, we developed a novel machine-learning model to estimate the carrier-to-noise ratio (CNR) of wireless medical telemetry (WMT) using time-domain waveform data measured by a low-cost software-defined radio. With automatic estimation of CNR, the management of the electromagnetic environment of WMT can be made easier. Therefore, we proposed a machine-learning method for estimating CNR. According to the performance evaluation results by 5-segment cross-validation on 704 types of measured data, CNR was estimated with 99.5% R-square and 0.844 dB mean absolute error using a gradient boosting regression tree. The gradient boosting decision tree classifiers predicted if the CNR exceeded 30 dB with 99.5% accuracy. The proposed method is effective for investigating electromagnetic environments in clinical settings.
在这项研究中,我们开发了一种新的机器学习模型,使用低成本软件定义无线电测量的时域波形数据来估计无线医疗遥测 (WMT) 的载噪比 (CNR)。通过自动估计 CNR,可以更轻松地管理 WMT 的电磁环境。因此,我们提出了一种用于估计 CNR 的机器学习方法。根据对 704 种测量数据进行 5 段交叉验证的性能评估结果,使用梯度提升回归树可以将 CNR 以 99.5%的 R 平方和 0.844 dB 的平均绝对误差进行估计。梯度提升决策树分类器以 99.5%的准确率预测 CNR 是否超过 30 dB。该方法对于调查临床环境中的电磁环境是有效的。