Suppr超能文献

疫苗接种主动安全性监测数据收集系统在中低收入国家的孕期应用:开发和试行评估工具(VPASS)。

Data collection systems for active safety surveillance of vaccines during pregnancy in low- and middle-income countries: developing and piloting an assessment tool (VPASS).

机构信息

Instituto de Efectividad Clínica y Sanitaria (IECS), Dr. Emilio Ravignani 2024 (C1014CPV), Buenos Aires, Argentina.

Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.

出版信息

BMC Pregnancy Childbirth. 2023 Mar 13;23(1):172. doi: 10.1186/s12884-023-05417-8.

Abstract

BACKGROUND

There is an urgent need for active safety surveillance to monitor vaccine exposure during pregnancy in low- and middle-income countries (LMICs). Existing maternal, newborn, and child health (MNCH) data collection systems could serve as platforms for post-marketing active surveillance of maternal immunization safety. To identify sites using existing systems, a thorough assessment should be conducted. Therefore, this study had the objectives to first develop an assessment tool and then to pilot this tool in sites using MNCH data collection systems through virtual informant interviews.

METHODS

We conducted a rapid review of the literature to identify frameworks on population health or post-marketing drug surveillance. Four frameworks that met the eligibility criteria were identified and served to develop an assessment tool capable of evaluating sites that could support active monitoring of vaccine safety during pregnancy. We conducted semi-structured interviews in six geographical sites using MNCH data collection systems (DHIS2, INDEPTH, and GNMNHR) to pilot domains included in the assessment tool.

RESULTS

We developed and piloted the "VPASS (Vaccines during Pregnancy - sites supporting Active Safety Surveillance) assessment tool" through interviews with nine stakeholders, including central-level systems key informants and site-level managers from DHIS2 and GNMNHR; DHIS2 in Kampala (Uganda) and Kigali (Rwanda); GNMNHR from Belagavi (India) and Lusaka (Zambia); and INDEPTH from Nanoro (Burkina Faso) and Manhica (Mozambique). The tool includes different domains such as the system's purpose, the scale of implementation, data capture and confidentiality, type of data collected, the capability of integration with other platforms, data management policies and data quality monitoring. Similarities among sites were found regarding some domains, such as data confidentiality, data management policies, and data quality monitoring. Four of the six sites met some domains to be eligible as potential sites for active surveillance of vaccinations during pregnancy, such as a routine collection of MNCH individual data and the capability of electronically integrating individual MNCH outcomes with information related to vaccine exposure during pregnancy. Those sites were: Rwanda (DHIS2), Manhica (IN-DEPTH), Lusaka (GNMNHR), and Belagavi (GNMNHR).

CONCLUSION

This study's findings should inform the successful implementation of active safety surveillance of vaccines during pregnancy by identifying and using active individual MNCH data collection systems in LMICs.

摘要

背景

迫切需要积极的安全监测来监测中低收入国家(LMICs)怀孕期间的疫苗暴露情况。现有的母婴、新生儿和儿童健康(MNCH)数据收集系统可以作为疫苗接种后主动监测产妇免疫安全性的平台。为了确定使用现有系统的地点,应该进行彻底的评估。因此,本研究的目的首先是开发一个评估工具,然后通过虚拟知情者访谈在使用 MNCH 数据收集系统的地点试行该工具。

方法

我们对文献进行了快速审查,以确定有关人口健康或上市后药物监测的框架。确定了符合入选标准的四个框架,用于开发一个评估工具,该工具能够评估能够支持怀孕期间疫苗安全性主动监测的地点。我们使用 MNCH 数据收集系统(DHIS2、INDEPTH 和 GNMNHR)在六个地理地点进行了半结构化访谈,以试行评估工具中包含的领域。

结果

我们通过对来自 DHIS2 和 GNMNHR 的中央系统关键信息员和现场经理、来自 DHIS2 的坎帕拉(乌干达)和基加利(卢旺达)、来自 GNMNHR 的贝拉加维(印度)和卢萨卡(赞比亚)以及来自 INDEPTH 的纳诺罗(布基纳法索)和马希卡(莫桑比克)的 9 名利益相关者的访谈,开发并试行“VPASS(怀孕期间疫苗 - 支持主动安全监测)评估工具”。该工具包括不同的领域,如系统的目的、实施规模、数据捕获和保密性、收集的数据类型、与其他平台集成的能力、数据管理政策和数据质量监测。在某些领域,如数据保密性、数据管理政策和数据质量监测,六个地点中的四个具有相似性。六个地点中的四个符合一些领域的条件,有资格成为怀孕期间疫苗主动监测的潜在地点,例如常规收集母婴个人数据以及以电子方式将母婴个人结果与怀孕期间疫苗接触相关信息整合的能力。这些地点是:卢旺达(DHIS2)、马希卡(IN-DEPTH)、卢萨卡(GNMNHR)和贝拉加维(GNMNHR)。

结论

本研究的发现应该通过在中低收入国家识别和使用积极的母婴个人数据收集系统,为成功实施怀孕期间疫苗的主动安全性监测提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e858/10012432/013cbbae8f57/12884_2023_5417_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验