Ni Yang, Stingo Francesco C, Baladandayuthapani Veerabhadran
Department of Statistics and Data Sciences, The University of Texas at Austin.
Department of Statistics, Rice University.
J Am Stat Assoc. 2019;114(525):184-197. doi: 10.1080/01621459.2017.1389739. Epub 2018 Jun 28.
We consider the problem of modeling conditional independence structures in heterogeneous data in the presence of additional subject-level covariates - termed Graphical Regression. We propose a novel specification of a conditional (in)dependence function of covariates - which allows the structure of a directed graph to vary flexibly with the covariates; imposes sparsity in both edge and covariate selection; produces both subject-specific and predictive graphs; and is computationally tractable. We provide theoretical justifications of our modeling endeavor, in terms of graphical model selection consistency. We demonstrate the performance of our method through rigorous simulation studies. We illustrate our approach in a cancer genomics-based precision medicine paradigm, where-in we explore gene regulatory networks in multiple myeloma taking prognostic clinical factors into account to obtain both population-level and subject-level gene regulatory networks.
我们考虑在存在额外个体水平协变量的情况下,对异质数据中的条件独立性结构进行建模的问题——称为图形回归。我们提出了一种协变量条件(非)依赖函数的新颖规范——它允许有向图的结构随协变量灵活变化;在边和协变量选择上都施加稀疏性;生成个体特定图和预测图;并且在计算上易于处理。我们从图形模型选择一致性的角度为我们的建模工作提供理论依据。我们通过严格的模拟研究展示了我们方法的性能。我们在基于癌症基因组学的精准医学范式中说明了我们的方法,在该范式中,我们考虑预后临床因素来探索多发性骨髓瘤中的基因调控网络,以获得群体水平和个体水平的基因调控网络。