Suppr超能文献

贝叶斯图形回归

Bayesian Graphical Regression.

作者信息

Ni Yang, Stingo Francesco C, Baladandayuthapani Veerabhadran

机构信息

Department of Statistics and Data Sciences, The University of Texas at Austin.

Department of Statistics, Rice University.

出版信息

J Am Stat Assoc. 2019;114(525):184-197. doi: 10.1080/01621459.2017.1389739. Epub 2018 Jun 28.

Abstract

We consider the problem of modeling conditional independence structures in heterogeneous data in the presence of additional subject-level covariates - termed Graphical Regression. We propose a novel specification of a conditional (in)dependence function of covariates - which allows the structure of a directed graph to vary flexibly with the covariates; imposes sparsity in both edge and covariate selection; produces both subject-specific and predictive graphs; and is computationally tractable. We provide theoretical justifications of our modeling endeavor, in terms of graphical model selection consistency. We demonstrate the performance of our method through rigorous simulation studies. We illustrate our approach in a cancer genomics-based precision medicine paradigm, where-in we explore gene regulatory networks in multiple myeloma taking prognostic clinical factors into account to obtain both population-level and subject-level gene regulatory networks.

摘要

我们考虑在存在额外个体水平协变量的情况下,对异质数据中的条件独立性结构进行建模的问题——称为图形回归。我们提出了一种协变量条件(非)依赖函数的新颖规范——它允许有向图的结构随协变量灵活变化;在边和协变量选择上都施加稀疏性;生成个体特定图和预测图;并且在计算上易于处理。我们从图形模型选择一致性的角度为我们的建模工作提供理论依据。我们通过严格的模拟研究展示了我们方法的性能。我们在基于癌症基因组学的精准医学范式中说明了我们的方法,在该范式中,我们考虑预后临床因素来探索多发性骨髓瘤中的基因调控网络,以获得群体水平和个体水平的基因调控网络。

相似文献

1
Bayesian Graphical Regression.
J Am Stat Assoc. 2019;114(525):184-197. doi: 10.1080/01621459.2017.1389739. Epub 2018 Jun 28.
3
High-Dimensional Gaussian Graphical Regression Models with Covariates.
J Am Stat Assoc. 2023;118(543):2088-2100. doi: 10.1080/01621459.2022.2034632. Epub 2022 Mar 14.
4
Bayesian Edge Regression in Undirected Graphical Models to Characterize Interpatient Heterogeneity in Cancer.
J Am Stat Assoc. 2022;117(538):533-546. doi: 10.1080/01621459.2021.2000866. Epub 2022 Jan 5.
5
Bayesian graphical models for modern biological applications.
Stat Methods Appt. 2022;31(2):197-225. doi: 10.1007/s10260-021-00572-8. Epub 2021 May 27.
7
Bayesian network-guided sparse regression with flexible varying effects.
Biometrics. 2024 Oct 3;80(4). doi: 10.1093/biomtc/ujae111.
9
Bayesian learning of multiple directed networks from observational data.
Stat Med. 2020 Dec 30;39(30):4745-4766. doi: 10.1002/sim.8751. Epub 2020 Sep 23.
10
Estimation of Directed Acyclic Graphs Through Two-stage Adaptive Lasso for Gene Network Inference.
J Am Stat Assoc. 2016;111(515):1004-1019. doi: 10.1080/01621459.2016.1142880. Epub 2016 Oct 18.

引用本文的文献

1
Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates.
J Comput Graph Stat. 2024 Dec 20. doi: 10.1080/10618600.2024.2421246.
2
Beyond Euclid: an illustrated guide to modern machine learning with geometric, topological, and algebraic structures.
Mach Learn Sci Technol. 2025 Sep 30;6(3):031002. doi: 10.1088/2632-2153/adf375. Epub 2025 Aug 1.
3
Covariance-on-covariance regression.
Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf097.
4
Connectivity Regression.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf002.
5
A probabilistic modeling framework for genomic networks incorporating sample heterogeneity.
Cell Rep Methods. 2025 Feb 24;5(2):100984. doi: 10.1016/j.crmeth.2025.100984. Epub 2025 Feb 14.
7
Bayesian thresholded modeling for integrating brain node and network predictors.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae048.
8
Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data.
J Am Stat Assoc. 2024;119(547):1985-1999. doi: 10.1080/01621459.2023.2233744. Epub 2023 Sep 6.
9
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae023.
10
Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.
J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28.

本文引用的文献

1
NON-LOCAL PRIORS FOR HIGH-DIMENSIONAL ESTIMATION.
J Am Stat Assoc. 2017;112(517):254-265. doi: 10.1080/01621459.2015.1130634. Epub 2017 May 3.
3
Bayesian Inference of Multiple Gaussian Graphical Models.
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.
4
Bayesian nonlinear model selection for gene regulatory networks.
Biometrics. 2015 Sep;71(3):585-95. doi: 10.1111/biom.12309. Epub 2015 Apr 8.
5
Cancer statistics, 2015.
CA Cancer J Clin. 2015 Jan-Feb;65(1):5-29. doi: 10.3322/caac.21254. Epub 2015 Jan 5.
6
Detecting differential patterns of interaction in molecular pathways.
Biostatistics. 2015 Apr;16(2):240-51. doi: 10.1093/biostatistics/kxu054. Epub 2014 Dec 16.
7
Nonparametric Independence Screening in Sparse Ultra-High Dimensional Varying Coefficient Models.
J Am Stat Assoc. 2014;109(507):1270-1284. doi: 10.1080/01621459.2013.879828.
8
A sparse Ising model with covariates.
Biometrics. 2014 Dec;70(4):943-53. doi: 10.1111/biom.12202. Epub 2014 Aug 5.
9
The joint graphical lasso for inverse covariance estimation across multiple classes.
J R Stat Soc Series B Stat Methodol. 2014 Mar;76(2):373-397. doi: 10.1111/rssb.12033.
10
Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy.
Cancer Cell. 2014 Jan 13;25(1):91-101. doi: 10.1016/j.ccr.2013.12.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验