Suppr超能文献

利用细胞内光交联质谱和深度学习进行蛋白质结构预测。

Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning.

机构信息

Robotics and Biology Laboratory, Technische Universität Berlin, Berlin, Germany.

Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany.

出版信息

Nat Biotechnol. 2023 Dec;41(12):1810-1819. doi: 10.1038/s41587-023-01704-z. Epub 2023 Mar 20.

Abstract

While AlphaFold2 can predict accurate protein structures from the primary sequence, challenges remain for proteins that undergo conformational changes or for which few homologous sequences are known. Here we introduce AlphaLink, a modified version of the AlphaFold2 algorithm that incorporates experimental distance restraint information into its network architecture. By employing sparse experimental contacts as anchor points, AlphaLink improves on the performance of AlphaFold2 in predicting challenging targets. We confirm this experimentally by using the noncanonical amino acid photo-leucine to obtain information on residue-residue contacts inside cells by crosslinking mass spectrometry. The program can predict distinct conformations of proteins on the basis of the distance restraints provided, demonstrating the value of experimental data in driving protein structure prediction. The noise-tolerant framework for integrating data in protein structure prediction presented here opens a path to accurate characterization of protein structures from in-cell data.

摘要

虽然 AlphaFold2 可以根据一级序列预测准确的蛋白质结构,但对于经历构象变化的蛋白质或已知同源序列较少的蛋白质,仍然存在挑战。在这里,我们引入了 AlphaLink,这是对 AlphaFold2 算法的修改版本,它将实验距离约束信息纳入其网络架构中。通过使用稀疏的实验接触作为锚点,AlphaLink 提高了 AlphaFold2 在预测具有挑战性的目标方面的性能。我们通过使用非典型氨基酸光氨酸来确认这一点,通过交联质谱法在细胞内获得关于残基-残基接触的信息。该程序可以根据提供的距离约束来预测蛋白质的不同构象,证明了实验数据在推动蛋白质结构预测方面的价值。这里提出的用于整合蛋白质结构预测数据的抗噪框架为从细胞内数据准确表征蛋白质结构开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1826/10713450/afd0921e3bf3/41587_2023_1704_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验