Xu Yan, Li Wenyuan, Chen Long, Li Wenzhang, Feng Wenhui, Qiu Xiaoqing
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Hongshan Road 98, Changsha 410022, P. R. China.
Inorg Chem. 2023 Apr 3;62(13):5253-5261. doi: 10.1021/acs.inorgchem.3c00290. Epub 2023 Mar 21.
Iron-nitrogen coordinated catalysts are regarded as efficient catalysts for the oxygen (O) reduction reaction (ORR), wherein the coordination environment of Fe sites is critical to the catalytic activity. Herein, we explored the effect of the nitrogen-coordination structure of dual-atomic Fe sites (i.e., Fe-N-C and Fe-N-C) on the performance of the ORR. The half-wave potential () of Fe-N-C is 0.880 V vs RHE, outperforming that of the tetracoordinate Fe-N-C (0.851 V) and commercial Pt/C (0.850 V) in alkaline electrolytes. The Fe-N-C-based zinc-air battery delivers a maximum power density of (258.6 mW/cm) and superior durability under 10 mA/cm. Theoretical calculations unveil that the moieties of Fe-N profits the d-electron rearrangement of the Fe sites. The electronic and geometrical structure of Fe-N promotes the O molecules adsorbed on the Fe site and reduces the dissociation energy barrier of O, benefiting fracture of O-O bonds and acceleration of the transformation of O to *OOH (the first step of the ORR process). Such exploration of modulating the local N-coordination environment of Fe dimers paves an in-depth insight to design and optimize dual-atomic catalysts.
铁氮配位催化剂被认为是氧还原反应(ORR)的高效催化剂,其中铁位点的配位环境对催化活性至关重要。在此,我们探究了双原子铁位点(即Fe-N-C和Fe-N-C)的氮配位结构对ORR性能的影响。在碱性电解质中,Fe-N-C的半波电位()相对于可逆氢电极(RHE)为0.880 V,优于四配位Fe-N-C(0.851 V)和商业Pt/C(0.850 V)。基于Fe-N-C的锌空气电池在10 mA/cm下具有258.6 mW/cm的最大功率密度和优异的耐久性。理论计算表明,Fe-N基团有利于铁位点的d电子重排。Fe-N的电子和几何结构促进了吸附在铁位点上的O分子,降低了O的解离能垒,有利于O-O键的断裂和O向*OOH(ORR过程的第一步)转化的加速。这种对铁二聚体局部氮配位环境的调控探索为设计和优化双原子催化剂提供了深入的见解。