Shcherbak N S, Suchkova I O, Dergacheva N I, Patkin E L, Voznyuk I A
Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia.
Institute of Experimental Medicine, St. Petersburg, Russia.
Zh Nevrol Psikhiatr Im S S Korsakova. 2023;123(3. Vyp. 2):26-32. doi: 10.17116/jnevro202312303226.
To quantify genome-wide DNA methylation in the olfactory bulbs, fronto-parietal and occipital regions, and cerebellum in normal male Wistar rats and in modeling incomplete cerebral ischemia caused by permanent bilateral occlusion of the common carotid arteries.
The study was performed on 23 male Wistar rats divided into groups: «Sham operation» and «Cerebral ischemia». The level of genome-wide methylation of CCGG sites was determined by methyl-sensitive restriction using MspI/HpaII endonucleases followed by densitometric analysis of electrophoregrams by ImageJ software.
Incomplete cerebral ischemia on the 7th day leads to 56.3% (95% CI: 33.2-76.90) mortality. In the surviving rats of the «Cerebral ischemia» group, compared with the animals of the «Sham operation» group, a pronounced neurological deficit was observed, which was accompanied by changes in the level of whole-genome DNA methylation in the nervous tissue of brain structures (<0.05). Incomplete cerebral ischemia in male Wistar rats was characterized by interhemispheric asymmetry in the severity and direction of the epigenomic reaction of the nervous tissue in both ischemic and non-ischemic areas of the brain.
It is likely that it is precisely this dynamics of changes in the status of genome-wide DNA methylation in the nervous tissue that imparts plasticity to neuronal function during ischemic damage.
量化正常雄性Wistar大鼠以及由双侧颈总动脉永久性闭塞导致的不完全性脑缺血模型中的嗅球、额顶叶和枕叶区域以及小脑中全基因组DNA甲基化情况。
对23只雄性Wistar大鼠进行研究,分为“假手术”组和“脑缺血”组。使用MspI/HpaII内切酶通过甲基敏感限制性内切酶法测定CCGG位点的全基因组甲基化水平,随后用ImageJ软件对电泳图进行光密度分析。
第7天的不完全性脑缺血导致56.3%(95%置信区间:33.2 - 76.90)的死亡率。在“脑缺血”组存活的大鼠中,与“假手术”组动物相比,观察到明显的神经功能缺损,同时伴有脑结构神经组织中全基因组DNA甲基化水平的变化(<0.05)。雄性Wistar大鼠的不完全性脑缺血表现为大脑缺血和非缺血区域神经组织表观基因组反应的严重程度和方向存在半球间不对称性。
很可能正是神经组织中全基因组DNA甲基化状态的这种动态变化赋予了缺血性损伤期间神经元功能可塑性。