Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
College of Life Sciences, Sichuan University, Chengdu, 610064, China.
Theor Appl Genet. 2023 Mar 23;136(4):69. doi: 10.1007/s00122-023-04297-y.
A major and stable QTL for fertile spikelet number per spike and grain number per fertile spikelet identified in a 4.96-Mb interval on chromosome 2A was validated in different genetic backgrounds. Fertile spikelet number per spike (FSN) and grain number per fertile spikelet (GNFS) contribute greatly to wheat yield improvement. To detect quantitative trait loci (QTL) associated with FSN and GNFS, we used a recombinant inbred line population crossed by Zhongkemai 13F10 and Chuanmai 42 in eight environments. Two Genomic regions associated with FSN were detected on chromosomes 2A and 6A using bulked segregant exome sequencing analysis. After the genetic linkage maps were constructed, four QTL QFsn.cib-2A, QFsn.cib-6A, QGnfs.cib-2A and QGnfs.cib-6A were identified in three or more environments. Among them, two major QTL QFsn.cib-2A (LOD = 4.67-9.34, PVE = 6.66-13.05%) and QGnfs.cib-2A (LOD = 5.27-11.68, PVE = 7.95-16.71%) were detected in seven and six environments, respectively. They were co-located in the same region, namely QFsn/Gnfs.cib-2A. The developed linked Kompetitive Allele Specific PCR (KASP) markers further validated this QTL in a different genetic background. QFsn/Gnfs.cib-2A showed pleiotropic effects on grain number per spike (GNS) and spike compactness (SC), and had no effect on grain weight. Since QFsn/Gnfs.cib-2A might be a new locus, it and the developed KASP markers can be used in wheat breeding. According to haplotype analysis, QFsn/Gnfs.cib-2A was identified as a target of artificial selection during wheat improvement. Based on haplotype analysis, sequence differences, spatiotemporal expression patterns, and gene annotation, the potential candidate genes for QFsn/Gnfs.cib-2A were predicted. These results provide valuable information for fine mapping and cloning gene(s) underlying QFsn/Gnfs.cib-2A.
在不同遗传背景下验证了在染色体 2A 上的 4.96Mb 区间中鉴定的一个大而稳定的小穗有效粒数和每小穗粒数的 QTL。小穗有效粒数(FSN)和每小穗粒数(GNFS)对小麦产量的提高有很大贡献。为了检测与 FSN 和 GNFS 相关的数量性状基因座(QTL),我们使用 Zhongkemai 13F10 和 Chuanmai 42 杂交的重组自交系群体在八个环境中进行了研究。使用 bulked segregant exome sequencing 分析,在染色体 2A 和 6A 上检测到与 FSN 相关的两个基因组区域。构建遗传连锁图谱后,在三个或更多环境中鉴定到四个 QTL QFsn.cib-2A、QFsn.cib-6A、QGnfs.cib-2A 和 QGnfs.cib-6A。其中,两个主要 QTL QFsn.cib-2A(LOD=4.67-9.34,PVE=6.66-13.05%)和 QGnfs.cib-2A(LOD=5.27-11.68,PVE=7.95-16.71%)分别在七个和六个环境中检测到。它们位于同一区域,即 QFsn/Gnfs.cib-2A。开发的连锁 Kompetitive Allele Specific PCR(KASP)标记在不同的遗传背景下进一步验证了这个 QTL。QFsn/Gnfs.cib-2A 对穗粒数(GNS)和穗紧密度(SC)表现出多效性,对粒重没有影响。由于 QFsn/Gnfs.cib-2A 可能是一个新的基因座,因此它和开发的 KASP 标记可用于小麦育种。根据单倍型分析,QFsn/Gnfs.cib-2A 是小麦改良过程中人工选择的目标。基于单倍型分析、序列差异、时空表达模式和基因注释,预测了 QFsn/Gnfs.cib-2A 的潜在候选基因。这些结果为 QFsn/Gnfs.cib-2A 的精细定位和克隆基因提供了有价值的信息。