Suppr超能文献

应用机器学习预测基于人体测量学和身体成分指数的非酒精性脂肪性肝病。

Application of machine learning in predicting non-alcoholic fatty liver disease using anthropometric and body composition indices.

机构信息

Department of Nutrition, Faculty of Medicine, Hormozgan University of Medical Sciences, Shahid Chamran Boulevard, Bandar Abbas, Iran.

Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong Victoria, Australia.

出版信息

Sci Rep. 2023 Mar 27;13(1):4942. doi: 10.1038/s41598-023-32129-y.

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, which can progress from simple steatosis to advanced cirrhosis and hepatocellular carcinoma. Clinical diagnosis of NAFLD is crucial in the early stages of the disease. The main aim of this study was to apply machine learning (ML) methods to identify significant classifiers of NAFLD using body composition and anthropometric variables. A cross-sectional study was carried out among 513 individuals aged 13 years old or above in Iran. Anthropometric and body composition measurements were performed manually using body composition analyzer InBody 270. Hepatic steatosis and fibrosis were determined using a Fibroscan. ML methods including k-Nearest Neighbor (kNN), Support Vector Machine (SVM), Radial Basis Function (RBF) SVM, Gaussian Process (GP), Random Forest (RF), Neural Network (NN), Adaboost and Naïve Bayes were examined for model performance and to identify anthropometric and body composition predictors of fatty liver disease. RF generated the most accurate model for fatty liver (presence of any stage), steatosis stages and fibrosis stages with 82%, 52% and 57% accuracy, respectively. Abdomen circumference, waist circumference, chest circumference, trunk fat and body mass index were among the most important variables contributing to fatty liver disease. ML-based prediction of NAFLD using anthropometric and body composition data can assist clinicians in decision making. ML-based systems provide opportunities for NAFLD screening and early diagnosis, especially in population-level and remote areas.

摘要

非酒精性脂肪性肝病(NAFLD)是最常见的慢性肝病,可从单纯性脂肪变性进展为晚期肝硬化和肝细胞癌。NAFLD 的临床诊断在疾病的早期阶段至关重要。本研究的主要目的是应用机器学习(ML)方法,使用人体成分和人体测量变量来识别 NAFLD 的显著分类器。在伊朗进行了一项横断面研究,纳入了 513 名年龄在 13 岁及以上的个体。使用人体成分分析仪 InBody 270 手动进行人体测量和人体成分测量。使用 Fibroscan 确定肝脂肪变性和纤维化。检查了 k-最近邻(kNN)、支持向量机(SVM)、径向基函数(RBF)SVM、高斯过程(GP)、随机森林(RF)、神经网络(NN)、Adaboost 和朴素贝叶斯等 ML 方法,以评估模型性能并确定人体测量和人体成分预测脂肪肝的因素。RF 为脂肪肝(任何阶段)、脂肪变性阶段和纤维化阶段生成了最准确的模型,准确率分别为 82%、52%和 57%。腹部周长、腰围、胸围、躯干脂肪和体重指数是与脂肪肝疾病相关的最重要变量之一。使用人体测量和人体成分数据进行基于 ML 的 NAFLD 预测可以帮助临床医生做出决策。基于 ML 的系统为 NAFLD 筛查和早期诊断提供了机会,尤其是在人群层面和偏远地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dc5/10043285/04bbec529f01/41598_2023_32129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验