School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador.
Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolqui, Quito 171103, Ecuador.
Mar Drugs. 2023 Mar 17;21(3):185. doi: 10.3390/md21030185.
In this work, the photochemical reduction method was used at 440 or 540 nm excitation wavelengths to optimize the deposition of silver nanoparticles on the diatom surface as a potential DNA biosensor. The as-synthesized nanocomposites were characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), fluorescence microscopy, and Raman spectroscopy. Our results revealed a 5.5-fold enhancement in the fluorescence response of the nanocomposite irradiated at 440 nm with DNA. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatoms and the localized surface plasmon of the silver nanoparticles interacting with the DNA. The advantage of this work involves the use of a low-cost green method to optimize the deposition of plasmonic nanoparticles on diatoms as an alternative fabrication method for fluorescent biosensors.
在这项工作中,使用光化学还原法在 440nm 或 540nm 激发波长下优化银纳米粒子在硅藻表面的沉积,作为潜在的 DNA 生物传感器。所合成的纳米复合材料通过紫外-可见分光光度计(UV-Vis)、傅里叶变换红外光谱(FTIR)、X 射线光电子能谱(XPS)、扫描透射电子显微镜(STEM)、荧光显微镜和拉曼光谱进行了表征。我们的结果表明,在 440nm 光照射下,纳米复合材料与 DNA 的相互作用导致其荧光响应增强了 5.5 倍。这种增强的灵敏度来自于硅藻导模共振和与 DNA 相互作用的银纳米粒子局域表面等离子体的光学耦合。这项工作的优势在于使用低成本的绿色方法来优化等离子体纳米粒子在硅藻上的沉积,作为荧光生物传感器的替代制造方法。