Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
Molecules. 2023 Mar 22;28(6):2877. doi: 10.3390/molecules28062877.
The flavin derivatives 10-methyl-isoalloxazine (MIA) and 6-fluoro-10-methyl-isoalloxazine (6F-MIA) were incorporated in two alternative metal-organic frameworks, (MOFs) MIL-53(Al) and MOF-5. We used a post-synthetic, diffusion-based incorporation into microcrystalline MIL-53 powders with one-dimensional (1D) pores and an in-situ approach during the synthesis of MOF-5 with its 3D channel network. The maximum amount of flavin dye incorporation is 3.9 wt% for MIA@MIL-53(Al) and 1.5 wt% for 6F-MIA@MIL-53(Al), 0.85 wt% for MIA@MOF-5 and 5.2 wt% for 6F-MIA@MOF-5. For the high incorporation yields the probability to have more than one dye molecule in a pore volume is significant. As compared to the flavins in solution, the fluorescence spectrum of these flavin@MOF composites is broadened at the bathocromic side especially for MIA. Time-resolved spectroscopy showed that multi-exponential fluorescence lifetimes were needed to describe the decays. The fluorescence-weighted lifetime of flavin@MOF of 4 ± 1 ns also corresponds to those in solution but is significantly prolonged compared to the solid flavin dyes with less than 1 ns, thereby confirming the concept of "solid solutions" for dye@MOF composites. The fluorescence quantum yield () of the flavin@MOF composites is about half of the solution but is significantly higher compared to the solid flavin dyes. Both the fluorescence lifetime and quantum yield of flavin@MOF decrease with the flavin loading in MIL-53 due to the formation of various J-aggregates. Theoretical calculations using plane-wave and QM/MM methods are in good correspondence with the experimental results and explain the electronic structures as well as the photophysical properties of crystalline MIA and the flavin@MOF composites. In the solid flavins, π-stacking interactions of the molecules lead to a charge transfer state with low oscillator strength resulting in aggregation-caused quenching (ACQ) with low lifetimes and quantum yields. In the MOF pores, single flavin molecules represent a major population and the computed MIA@MOF structures do not find π-stacking interactions with the pore walls but only weak van-der-Waals contacts which reasons the enhanced fluorescence lifetime and quantum yield of the flavins in the composites compared to their neat solid state. To analyze the orientation of flavins in MOFs, we measured fluorescence anisotropy images of single flavin@MOF-5 crystals and a static ensemble flavin@MIL53 microcrystals, respectively. Based on image information, anisotropy distributions and overall curve of the time-resolved anisotropy curves combined with theoretical calculations, we can prove that all fluorescent flavins species have a defined and rather homogeneous orientation in the MOF framework. In MIL-53, the transition dipole moments of flavins are orientated along the 1D channel axis, whereas in MOF-5 we resolved an average orientation that is tilted with respect to the cubic crystal lattice. Notably, the more hydrophobic 6F-MIA exhibits a higher degree order than MIA. The flexible MOF MIL-53(Al) was optimized essentially to the experimental large-pore form in the guest-free state with QuantumEspresso (QE) and with MIA molecules in the pores the structure contracted to close to the experimental narrow-pore form which was also confirmed by PXRD. In summary, the incorporation of flavins in MOFs yields solid-state materials with enhanced rigidity, stabilized conformation, defined orientation and reduced aggregations of the flavins, leading to increased fluorescence lifetime and quantum yield as controllable photo-luminescent and photo-physical properties.
黄素衍生物 10-甲基异咯嗪(MIA)和 6-氟-10-甲基异咯嗪(6F-MIA)被掺入两种替代的金属有机骨架(MOFs),MIL-53(Al) 和 MOF-5 中。我们使用后合成的、基于扩散的方法将黄素染料掺入具有一维(1D)孔的微晶 MIL-53 粉末中,并且在合成具有 3D 通道网络的 MOF-5 时采用原位方法。MIA@MIL-53(Al) 的最大黄素染料掺入量为 3.9wt%,6F-MIA@MIL-53(Al) 的最大掺入量为 1.5wt%,MIA@MOF-5 的最大掺入量为 0.85wt%,6F-MIA@MOF-5 的最大掺入量为 5.2wt%。对于高掺入量,在一个孔体积中存在多个染料分子的概率是显著的。与溶液中的黄素相比,这些黄素@MOF 复合材料的荧光光谱在红移侧变宽,特别是对于 MIA。时间分辨光谱表明,需要多指数荧光寿命来描述衰减。黄素@MOF 的荧光加权寿命为 4±1ns,也与溶液中的寿命相对应,但与固态黄素染料相比,寿命显著延长,固态黄素染料的寿命小于 1ns,从而证实了染料@MOF 复合材料的“固态溶液”概念。黄素@MOF 复合材料的荧光量子产率()约为溶液的一半,但与固态黄素染料相比,荧光量子产率显著提高。由于形成了各种 J-聚集体,MIL-53 中黄素@MOF 的荧光寿命和量子产率都随黄素负载量的增加而降低。使用平面波和 QM/MM 方法的理论计算与实验结果非常吻合,并解释了结晶 MIA 和黄素@MOF 复合材料的电子结构以及光物理性质。在固态黄素中,分子间的π-堆积相互作用导致具有低振子强度的电荷转移态,从而导致具有低寿命和量子产率的聚集猝灭(ACQ)。在 MOF 孔中,单个黄素分子代表主要群体,计算得到的 MIA@MOF 结构与孔壁之间没有发现π-堆积相互作用,只有较弱的范德华接触,这就是为什么与它们的纯固态相比,黄素在复合材料中的荧光寿命和量子产率增强。为了分析黄素在 MOFs 中的取向,我们分别测量了单个黄素@MOF-5 晶体和静态黄素@MIL53 微晶的荧光各向异性图像。基于图像信息、各向异性分布和时间分辨各向异性曲线的整体曲线,并结合理论计算,我们可以证明所有荧光黄素物种在 MOF 骨架中都具有明确且相对均匀的取向。在 MIL-53 中,黄素的跃迁偶极矩沿着 1D 通道轴取向,而在 MOF-5 中,我们确定了相对于立方晶格倾斜的平均取向。值得注意的是,疏水性更强的 6F-MIA 比 MIA 具有更高的有序度。柔性 MOF MIL-53(Al) 在没有客体的情况下基本上被优化为实验中的大孔形式,并用 QuantumEspresso(QE)进行了优化,而在孔中存在 MIA 分子时,结构会收缩到接近实验中的小孔形式,这也通过 PXRD 得到了证实。总之,黄素在 MOFs 中的掺入得到了具有增强刚性、稳定构象、定义取向和减少黄素聚集的固态材料,从而导致荧光寿命和量子产率增加,作为可控制的光致发光和光物理性质。