Suppr超能文献

DECAF:一种用于 ICU 死亡率预测的可解释深度级联框架。

DECAF: An interpretable deep cascading framework for ICU mortality prediction.

机构信息

Department of Computer Science and Technology, Harbin Institute of Technology, China; Artificial Intelligence Research Institute, Harbin Institute of Technology, China.

Department of Computer Science and Technology, Harbin Institute of Technology, China.

出版信息

Artif Intell Med. 2023 Apr;138:102437. doi: 10.1016/j.artmed.2022.102437. Epub 2022 Nov 8.

Abstract

Medical risk detection is an important topic and a challenging task to improve the performance of clinical practices in Intensive Care Units (ICU). Although many bio-statistical learning and deep learning approaches have provided patient-specific mortality predictions, these existing methods lack interpretability that is crucial to gain adequate insight on why such predictions would work. In this paper, we introduce cascading theory to model the physiological domino effect and provide a novel approach to dynamically simulate the deterioration of patients' conditions. We propose a general DEep CAscading Framework (DECAF) to predict the potential risks of all physiological functions at each clinical stage. Compared with other feature-based and/or score-based models, our approach has a range of desirable properties, such as being interpretable, applicable with multi prediction tasks, and learnable from medical common sense and/or clinical experience knowledge. Experiments on a medical dataset (MIMIC-III) of 21,828 ICU patients show that DECAF reaches up to 89.30 % on AUROC, which surpasses the best competing methods for mortality prediction.

摘要

医疗风险检测是一个重要的课题,对于提高重症监护病房(ICU)的临床实践性能是一项具有挑战性的任务。尽管许多生物统计学习和深度学习方法已经提供了针对患者的死亡率预测,但这些现有方法缺乏可解释性,而这对于深入了解为什么这些预测能够起作用至关重要。在本文中,我们引入级联理论来模拟生理级联效应,并提供一种新颖的方法来动态模拟患者病情的恶化。我们提出了一种通用的深度级联框架(DEep CAscading Framework,DECAF)来预测每个临床阶段所有生理功能的潜在风险。与其他基于特征和/或基于评分的模型相比,我们的方法具有一系列理想的特性,例如可解释性、适用于多种预测任务、并且可以从医学常识和/或临床经验知识中学习。在一个包含 21828 名 ICU 患者的医疗数据集(MIMIC-III)上的实验表明,DECAF 在 AUROC 上达到了 89.30%,超过了死亡率预测的最佳竞争方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验