Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Cell Rep. 2023 Apr 25;42(4):112318. doi: 10.1016/j.celrep.2023.112318. Epub 2023 Mar 29.
Cell type is hypothesized to be a key determinant of a neuron's role within a circuit. Here, we examine whether a neuron's transcriptomic type influences the timing of its activity. We develop a deep-learning architecture that learns features of interevent intervals across timescales (ms to >30 min). We show that transcriptomic cell-class information is embedded in the timing of single neuron activity in the intact brain of behaving animals (calcium imaging and extracellular electrophysiology) as well as in a bio-realistic model of the visual cortex. Further, a subset of excitatory cell types are distinguishable but can be classified with higher accuracy when considering cortical layer and projection class. Finally, we show that computational fingerprints of cell types may be universalizable across structured stimuli and naturalistic movies. Our results indicate that transcriptomic class and type may be imprinted in the timing of single neuron activity across diverse stimuli.
细胞类型被假设为神经元在回路中作用的关键决定因素。在这里,我们研究了神经元的转录组类型是否会影响其活动的时间。我们开发了一种深度学习架构,该架构可以学习跨时间尺度(毫秒至> 30 分钟)的事件间间隔的特征。我们表明,转录组细胞类信息嵌入在行为动物的完整大脑中单个神经元活动的时间中(钙成像和细胞外电生理学)以及在视觉皮层的生物逼真模型中。此外,兴奋性细胞类型的一部分可以区分,但当考虑皮质层和投射类时,可以更准确地对其进行分类。最后,我们表明,细胞类型的计算特征可能可以跨结构化刺激和自然电影实现通用性。我们的结果表明,转录组类和类型可能会在各种刺激下的单个神经元活动的时间中留下印记。