Suppr超能文献

重新编程靶向抗菌质粒 (TAPs) 以实现广谱抗菌活性。

Reprogramming Targeted-Antibacterial-Plasmids (TAPs) to achieve broad-host range antibacterial activity.

机构信息

Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon 69007, France.

Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon 69007, France.

出版信息

Plasmid. 2023 May;126:102680. doi: 10.1016/j.plasmid.2023.102680. Epub 2023 Mar 30.

Abstract

The emergence and spread of antimicrobial resistance results in antibiotic inefficiency against multidrug resistant bacterial strains. Alternative treatment to antibiotics must be investigated to fight bacterial infections and limit this global public health problem. We recently developed an innovative strategy based on mobilizable Targeted-Antibacterial-Plasmids (TAPs) that deliver CRISPR/Cas systems with strain-specific antibacterial activity, using the F plasmid conjugation machinery for transfer into the targeted strains. These TAPs were shown to specifically kill a variety of Enterobacteriaceae strains, including E. coli K12 and the pathogen strains EPEC, Enterobacter cloacae and Citrobacter rodentium. Here, we extend the host-range of TAPs using the RP4 plasmid conjugation system for their mobilization, thus allowing the targeting of E. coli but also phylogenetically distant species, including Salmonella enterica Thyphimurium, Klebsiella pneumoniae, Vibrio cholerae, and Pseudomonas aeruginosa. This work demonstrates the versatility of the TAP strategy and represents a significant step toward the development of non-antibiotic strain-specific antimicrobial treatments.

摘要

抗菌药物耐药性的出现和传播导致抗生素对多药耐药菌菌株无效。必须研究替代抗生素的治疗方法来对抗细菌感染,并限制这一全球公共卫生问题。我们最近开发了一种基于可移动靶向抗菌质粒(TAP)的创新策略,该策略利用 F 质粒接合机制将具有菌株特异性抗菌活性的 CRISPR/Cas 系统转导到目标菌株中。这些 TAP 被证明可以特异性杀死多种肠杆菌科菌株,包括大肠杆菌 K12 和病原菌菌株 EPEC、阴沟肠杆菌和鼠柠檬酸杆菌。在这里,我们使用 RP4 质粒接合系统扩展了 TAP 的宿主范围,使其能够靶向大肠杆菌,但也能靶向亲缘关系较远的物种,包括肠炎沙门氏菌 Typhimurium、肺炎克雷伯菌、霍乱弧菌和铜绿假单胞菌。这项工作证明了 TAP 策略的多功能性,是朝着开发非抗生素、菌株特异性抗菌治疗方法迈出的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验