Department of Statistics, London School of Economics and Political Science, Columbia House, Room 5.16, Houghton Street, London, WC2A 2AE, UK.
Department of Statistics, USBE, Umeå University, Umeå, Sweden.
Psychometrika. 2023 Jun;88(2):527-553. doi: 10.1007/s11336-023-09911-y. Epub 2023 Mar 31.
Researchers have widely used exploratory factor analysis (EFA) to learn the latent structure underlying multivariate data. Rotation and regularised estimation are two classes of methods in EFA that they often use to find interpretable loading matrices. In this paper, we propose a new family of oblique rotations based on component-wise [Formula: see text] loss functions [Formula: see text] that is closely related to an [Formula: see text] regularised estimator. We develop model selection and post-selection inference procedures based on the proposed rotation method. When the true loading matrix is sparse, the proposed method tends to outperform traditional rotation and regularised estimation methods in terms of statistical accuracy and computational cost. Since the proposed loss functions are nonsmooth, we develop an iteratively reweighted gradient projection algorithm for solving the optimisation problem. We also develop theoretical results that establish the statistical consistency of the estimation, model selection, and post-selection inference. We evaluate the proposed method and compare it with regularised estimation and traditional rotation methods via simulation studies. We further illustrate it using an application to the Big Five personality assessment.
研究人员广泛使用探索性因子分析(EFA)来了解多元数据背后的潜在结构。旋转和正则化估计是 EFA 中常用的两类方法,它们通常用于找到可解释的加载矩阵。在本文中,我们提出了一种新的基于分量[Formula: see text]损失函数[Formula: see text]的斜交旋转族,它与[Formula: see text]正则化估计器密切相关。我们基于提出的旋转方法开发了模型选择和后选择推断程序。当真实加载矩阵稀疏时,提出的方法在统计准确性和计算成本方面往往优于传统的旋转和正则化估计方法。由于提出的损失函数是非光滑的,我们开发了一种迭代加权梯度投影算法来解决优化问题。我们还提出了统计一致性的理论结果,用于估计、模型选择和后选择推断。我们通过模拟研究评估了所提出的方法,并将其与正则化估计和传统旋转方法进行了比较。我们进一步通过应用于五大人格评估来说明它。