Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, United Kingdom.
J Chem Phys. 2023 Mar 28;158(12):124708. doi: 10.1063/5.0139448.
For sessile droplets of pure liquid on a surface, evaporation depends on surface wettability, the surrounding environment, contact angle hysteresis, and surface roughness. For non-pure liquids, the evaporation characteristics are further complicated by the constituents and impurities within the droplet. For saline solutions, this complication takes the form of a modified partial vapor pressure/water activity caused by the increasing salt concentration as the aqueous solvent evaporates. It is generally thought that droplets on surfaces will crystallize when the saturation concentration is reached, i.e., 26.3% for NaCl in water. This crystallization is initiated by contact with the surface and is thus due to surface roughness and heterogeneities. Recently, smooth, low contact angle hysteresis surfaces have been created by molecular grafting of polymer chains. In this work, we hypothesize that by using these very smooth surfaces to evaporate saline droplets, we can suppress the crystallization caused by the surface interactions and thus achieve constant volume droplets above the saturation concentration. In our experiments, we used several different surfaces to examine the possibility of crystallization suppression. We show that on polymer grafted surfaces, i.e., Slippery Omniphobic Covalently Attached Liquid-like (SOCAL) and polyethyleneglycol(PEGylated) surfaces, we can achieve stable droplets as low as 55% relative humidity at 25 °C with high reproducibility using NaCl in water solutions. We also show that it is possible to achieve stable droplets above the saturation concentration on other surfaces, including superhydrophobic surfaces. We present an analytical model, based on water activity, which accurately describes the final stable volume as a function of the initial salt concentration. These findings are important for heat and mass transfer in relatively low humidity environments.
对于纯液滴在表面上的静止状态,蒸发取决于表面润湿性、周围环境、接触角滞后和表面粗糙度。对于非纯液体,蒸发特性由于液滴中的成分和杂质而变得更加复杂。对于盐溶液,这种复杂性表现为随着水溶剂蒸发,盐浓度增加导致的部分蒸气压/水活度的改变。一般认为,当达到饱和浓度时,即水中的 NaCl 为 26.3%,表面上的液滴会结晶。这种结晶是由与表面接触引发的,因此是由表面粗糙度和不均匀性引起的。最近,通过聚合物链的分子接枝,已经制备出了具有光滑表面和低接触角滞后的表面。在这项工作中,我们假设通过使用这些非常光滑的表面蒸发盐溶液滴,可以抑制由于表面相互作用引起的结晶,并在饱和浓度以上实现恒体积液滴。在我们的实验中,我们使用了几种不同的表面来研究抑制结晶的可能性。我们表明,在聚合物接枝表面上,即滑润的全疏液共价附着(SOCAL)和聚乙二醇(PEGylated)表面上,我们可以在 25°C 时使用水的 NaCl 溶液实现相对湿度低至 55%的稳定液滴,并且具有很高的重现性。我们还表明,在其他表面上,包括超疏水表面,也有可能实现高于饱和浓度的稳定液滴。我们提出了一个基于水活度的分析模型,该模型准确地描述了最终稳定体积与初始盐浓度的函数关系。这些发现对于相对低湿度环境中的传热和传质非常重要。