Suppr超能文献

阐明多模态电生理分类器中模态重要性的新方法。

Novel methods for elucidating modality importance in multimodal electrophysiology classifiers.

作者信息

Ellis Charles A, Sendi Mohammad S E, Zhang Rongen, Carbajal Darwin A, Wang May D, Miller Robyn L, Calhoun Vince D

机构信息

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States.

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States.

出版信息

Front Neuroinform. 2023 Mar 15;17:1123376. doi: 10.3389/fninf.2023.1123376. eCollection 2023.

Abstract

INTRODUCTION

Multimodal classification is increasingly common in electrophysiology studies. Many studies use deep learning classifiers with raw time-series data, which makes explainability difficult, and has resulted in relatively few studies applying explainability methods. This is concerning because explainability is vital to the development and implementation of clinical classifiers. As such, new multimodal explainability methods are needed.

METHODS

In this study, we train a convolutional neural network for automated sleep stage classification with electroencephalogram (EEG), electrooculogram, and electromyogram data. We then present a global explainability approach that is uniquely adapted for electrophysiology analysis and compare it to an existing approach. We present the first two local multimodal explainability approaches. We look for subject-level differences in the local explanations that are obscured by global methods and look for relationships between the explanations and clinical and demographic variables in a novel analysis.

RESULTS

We find a high level of agreement between methods. We find that EEG is globally the most important modality for most sleep stages and that subject-level differences in importance arise in local explanations that are not captured in global explanations. We further show that sex, followed by medication and age, had significant effects upon the patterns learned by the classifier.

DISCUSSION

Our novel methods enhance explainability for the growing field of multimodal electrophysiology classification, provide avenues for the advancement of personalized medicine, yield unique insights into the effects of demographic and clinical variables upon classifiers, and help pave the way for the implementation of multimodal electrophysiology clinical classifiers.

摘要

引言

多模态分类在电生理学研究中越来越普遍。许多研究使用深度学习分类器处理原始时间序列数据,这使得可解释性变得困难,导致应用可解释性方法的研究相对较少。这令人担忧,因为可解释性对于临床分类器的开发和应用至关重要。因此,需要新的多模态可解释性方法。

方法

在本研究中,我们训练了一个卷积神经网络,用于利用脑电图(EEG)、眼电图和肌电图数据进行自动睡眠阶段分类。然后,我们提出了一种专门适用于电生理学分析的全局可解释性方法,并将其与现有方法进行比较。我们提出了前两种局部多模态可解释性方法。我们在局部解释中寻找被全局方法掩盖的个体水平差异,并在一项新颖的分析中寻找解释与临床和人口统计学变量之间的关系。

结果

我们发现不同方法之间具有高度一致性。我们发现,对于大多数睡眠阶段,EEG在全局上是最重要的模态,并且在局部解释中出现了全局解释未捕捉到的个体水平重要性差异。我们进一步表明,性别对分类器学习的模式有显著影响,其次是药物和年龄。

讨论

我们的新方法增强了多模态电生理学分类这一不断发展领域的可解释性,为个性化医疗的发展提供了途径,对人口统计学和临床变量对分类器的影响产生了独特见解,并有助于为多模态电生理学临床分类器的应用铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验