Suppr超能文献

线粒体 DNA 和 STING 通路是肝星状细胞激活所必需的。

Mitochondrial DNA and the STING pathway are required for hepatic stellate cell activation.

机构信息

Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA.

Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.

出版信息

Hepatology. 2023 Nov 1;78(5):1448-1461. doi: 10.1097/HEP.0000000000000388. Epub 2023 Apr 5.

Abstract

BACKGROUND AND AIMS

TGF-β induces multiple structural and functional changes in quiescent HSCs, including an increase in proliferation, mitochondrial mass, and matrix deposition. HSC transdifferentiation requires significant bioenergetic capacity, and it is not known how TGF-β-mediated transcriptional upregulation is coordinated with the bioenergetic capacity of HSCs.

APPROACH AND RESULTS

Mitochondria are key bioenergetic organelles, and here, we report that TGF-β induces release of mitochondrial DNA (mtDNA) from healthy HSCs through voltage-dependent anion channels (VDACs), with the formation of an mtDNA-CAP on the external mitochondrial membrane. This stimulates organization of cytosolic cyclic GMP-AMP synthase (cGAS) onto the mtDNA-CAP and subsequent activation of the cGAS-STING-IRF3 pathway. TGF-β is unable to induce conversion of HSCs from a quiescent to a transdifferentiated phenotype in the absence of mtDNA, VDAC, or stimulator of interferon genes (STING). Transdifferentiation by TGF-β is blocked by a STING inhibitor, which also reduces liver fibrosis prophylactically and therapeutically.

CONCLUSIONS

We have identified a pathway that requires the presence of functional mitochondria for TGF-β to mediate HSC transcriptional regulation and transdifferentiation and therefore provides a key link between bioenergetic capacity of HSCs and signals for transcriptional upregulation of genes of anabolic pathways.

摘要

背景与目的

TGF-β 可诱导静止 HSCs 发生多种结构和功能变化,包括增殖、线粒体质量和基质沉积增加。HSC 转分化需要大量的生物能量,目前尚不清楚 TGF-β 介导的转录上调如何与 HSCs 的生物能量能力相协调。

方法和结果

线粒体是关键的生物能细胞器,在这里,我们报告 TGF-β 通过电压依赖性阴离子通道(VDACs)诱导健康 HSCs 释放线粒体 DNA(mtDNA),在外膜上形成 mtDNA-CAP。这刺激细胞质环鸟苷酸-腺苷酸合酶(cGAS)在 mtDNA-CAP 上的组织,并随后激活 cGAS-STING-IRF3 途径。如果没有 mtDNA、VDAC 或干扰素基因刺激物(STING),TGF-β 就无法诱导 HSCs 从静止状态转变为分化状态。STING 抑制剂阻断 TGF-β 的转分化,该抑制剂还可预防性和治疗性地减少肝纤维化。

结论

我们已经确定了一条途径,该途径需要功能性线粒体的存在,TGF-β 才能介导 HSC 转录调控和转分化,因此为 HSCs 的生物能量能力与合成代谢途径基因转录上调信号之间提供了关键联系。

相似文献

1
Mitochondrial DNA and the STING pathway are required for hepatic stellate cell activation.
Hepatology. 2023 Nov 1;78(5):1448-1461. doi: 10.1097/HEP.0000000000000388. Epub 2023 Apr 5.
3
MLKL activates the cGAS-STING pathway by releasing mitochondrial DNA upon necroptosis induction.
Mol Cell. 2025 Jul 3;85(13):2610-2625.e5. doi: 10.1016/j.molcel.2025.06.005.
10
cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independently of STING.
Am J Physiol Gastrointest Liver Physiol. 2018 Jun 1;314(6):G655-G667. doi: 10.1152/ajpgi.00326.2017. Epub 2018 Feb 15.

引用本文的文献

1
Advances in cGAS-STING Signaling in Fibrosis Diseases: Therapeutic Target in Pathological Scars.
J Inflamm Res. 2025 Aug 9;18:10777-10793. doi: 10.2147/JIR.S541656. eCollection 2025.
2
Unlocking the therapeutic potential of the STING signaling pathway in anti-tumor treatment.
Clin Exp Med. 2025 Aug 12;25(1):290. doi: 10.1007/s10238-025-01838-1.
3
cGAS-STING Targeting Offers Novel Therapeutic Opportunities in Liver Diseases.
Drug Des Devel Ther. 2025 Jul 9;19:5835-5853. doi: 10.2147/DDDT.S521397. eCollection 2025.
4
XBP1 promotes endometrial fibrosis through cGAS-STING signaling pathway in intrauterine adhesion.
Sci Rep. 2025 Jul 2;15(1):23299. doi: 10.1038/s41598-025-06162-y.
5
Mitochondrial DNA leakage: underlying mechanisms and therapeutic implications in neurological disorders.
J Neuroinflammation. 2025 Feb 7;22(1):34. doi: 10.1186/s12974-025-03363-0.
7
The effects of cGAS-STING inhibition in liver disease, kidney disease, and cellular senescence.
Front Immunol. 2024 Jul 24;15:1346446. doi: 10.3389/fimmu.2024.1346446. eCollection 2024.

本文引用的文献

2
An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis.
Sci Transl Med. 2023 Jan 4;15(677):eadd3949. doi: 10.1126/scitranslmed.add3949.
3
LPS-induced mitochondrial DNA synthesis and release facilitate RAD50-dependent acute lung injury.
Signal Transduct Target Ther. 2021 Mar 3;6(1):103. doi: 10.1038/s41392-021-00494-7.
4
The Power of Plasticity-Metabolic Regulation of Hepatic Stellate Cells.
Cell Metab. 2021 Feb 2;33(2):242-257. doi: 10.1016/j.cmet.2020.10.026. Epub 2020 Nov 23.
5
Mitochondrial Protrusions in Neuronal Cells.
iScience. 2020 Aug 29;23(9):101514. doi: 10.1016/j.isci.2020.101514. eCollection 2020 Sep 25.
6
TGFβ-dependent mitochondrial biogenesis is activated during definitive endoderm differentiation.
In Vitro Cell Dev Biol Anim. 2020 May;56(5):378-385. doi: 10.1007/s11626-020-00442-9. Epub 2020 Jun 8.
7
Molecular mechanisms and cellular functions of cGAS-STING signalling.
Nat Rev Mol Cell Biol. 2020 Sep;21(9):501-521. doi: 10.1038/s41580-020-0244-x. Epub 2020 May 18.
8
Mitochondrial DNA in inflammation and immunity.
EMBO Rep. 2020 Apr 3;21(4):e49799. doi: 10.15252/embr.201949799. Epub 2020 Mar 23.
9
Connexin-Dependent Transfer of cGAMP to Phagocytes Modulates Antiviral Responses.
mBio. 2020 Jan 28;11(1):e03187-19. doi: 10.1128/mBio.03187-19.
10
VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease.
Science. 2019 Dec 20;366(6472):1531-1536. doi: 10.1126/science.aav4011. Epub 2019 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验