Suppr超能文献

用于图像分类的基于尺度约束结构化表示的判别字典对学习

Discriminative Dictionary Pair Learning With Scale-Constrained Structured Representation for Image Classification.

作者信息

Chen Zhe, Wu Xiao-Jun, Xu Tianyang, Kittler Josef

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):10225-10239. doi: 10.1109/TNNLS.2022.3165217. Epub 2023 Nov 30.

Abstract

The dictionary pair learning (DPL) model aims to design a synthesis dictionary and an analysis dictionary to accomplish the goal of rapid sample encoding. In this article, we propose a novel structured representation learning algorithm based on the DPL for image classification. It is referred to as discriminative DPL with scale-constrained structured representation (DPL-SCSR). The proposed DPL-SCSR utilizes the binary label matrix of dictionary atoms to project the representation into the corresponding label space of the training samples. By imposing a non-negative constraint, the learned representation adaptively approximates a block-diagonal structure. This innovative transformation is also capable of controlling the scale of the block-diagonal representation by enforcing the sum of within-class coefficients of each sample to 1, which means that the dictionary atoms of each class compete to represent the samples from the same class. This implies that the requirement of similarity preservation is considered from the perspective of the constraint on the sum of coefficients. More importantly, the DPL-SCSR does not need to design a classifier in the representation space as the label matrix of the dictionary can also be used as an efficient linear classifier. Finally, the DPL-SCSR imposes the l -norm on the analysis dictionary to make the process of feature extraction more interpretable. The DPL-SCSR seamlessly incorporates the scale-constrained structured representation learning, within-class similarity preservation of representation, and the linear classifier into one regularization term, which dramatically reduces the complexity of training and parameter tuning. The experimental results on several popular image classification datasets show that our DPL-SCSR can deliver superior performance compared with the state-of-the-art (SOTA) dictionary learning methods. The MATLAB code of this article is available at https://github.com/chenzhe207/DPL-SCSR.

摘要

字典对学习(DPL)模型旨在设计一个合成字典和一个分析字典,以实现快速样本编码的目标。在本文中,我们提出了一种基于DPL的用于图像分类的新型结构化表示学习算法。它被称为具有尺度约束结构化表示的判别式DPL(DPL-SCSR)。所提出的DPL-SCSR利用字典原子的二进制标签矩阵将表示投影到训练样本的相应标签空间中。通过施加非负约束,学习到的表示自适应地逼近块对角结构。这种创新的变换还能够通过将每个样本的类内系数之和强制为1来控制块对角表示的尺度,这意味着每个类别的字典原子竞争表示来自同一类别的样本。这意味着从系数和的约束角度考虑了相似性保持的要求。更重要的是,DPL-SCSR不需要在表示空间中设计分类器,因为字典的标签矩阵也可以用作高效的线性分类器。最后,DPL-SCSR对分析字典施加l -范数,以使特征提取过程更具可解释性。DPL-SCSR将尺度约束结构化表示学习、表示的类内相似性保持和线性分类器无缝地整合到一个正则化项中,这大大降低了训练和参数调整的复杂性。在几个流行的图像分类数据集上的实验结果表明,与现有最先进(SOTA)的字典学习方法相比,我们的DPL-SCSR可以提供卓越的性能。本文的MATLAB代码可在https://github.com/chenzhe207/DPL-SCSR获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验