Suppr超能文献

基于零膨胀自动编码器嵌入的单细胞 RNA-Seq 数据深度多约束软聚类分析。

Deep Multi-Constraint Soft Clustering Analysis for Single-Cell RNA-Seq Data via Zero-Inflated Autoencoder Embedding.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):2254-2265. doi: 10.1109/TCBB.2023.3240253. Epub 2023 Jun 5.

Abstract

Clustering cells into subgroups plays a critical role in single cell-based analyses, which facilitates to reveal cell heterogeneity and diversity. Due to the ever-increasing scRNA-seq data and low RNA capture rate, it has become challenging to cluster high-dimensional and sparse scRNA-seq data. In this study, we propose a single-cell Multi-Constraint deep soft K-means Clustering(scMCKC) framework. Based on zero-inflated negative binomial (ZINB) model-based autoencoder, scMCKC constructs a novel cell-level compactness constraint by considering association between similar cell, to emphasize the compactness between clusters. Besides, scMCKC utilizes pairwise constraint encoded by prior information to guide clustering. Meanwhile, a weighted soft K-means algorithm is leveraged to determine the cell populations, which assigns the label based on affinity between data and clustering center. Experiments on eleven scRNA-seq datasets demonstrate that scMCKC is superior to the state-of-the-art methods and notably improves cluster performance. Moreover, we validate the robustness on human kidney dataset, which demonstrates that scMCKC exhibits comprehensively excellent performance on clustering analysis. The ablation study on eleven datasets proves that the novel cell-level compactness constraint is conductive to the clustering results.

摘要

聚类细胞成亚群在单细胞分析中起着关键作用,有助于揭示细胞异质性和多样性。由于 scRNA-seq 数据的不断增加和低 RNA 捕获率,聚类高维稀疏 scRNA-seq 数据变得具有挑战性。在这项研究中,我们提出了一种单细胞多约束深度软 K 均值聚类(scMCKC)框架。基于零膨胀负二项(ZINB)模型的自动编码器,scMCKC 通过考虑相似细胞之间的关联构建了一种新的细胞级紧致性约束,以强调簇之间的紧致性。此外,scMCKC 利用先验信息编码的成对约束来指导聚类。同时,利用加权软 K-means 算法来确定细胞群体,根据数据和聚类中心之间的亲和力分配标签。在十一个 scRNA-seq 数据集上的实验表明,scMCKC 优于最先进的方法,并且显著提高了聚类性能。此外,我们在人类肾脏数据集上验证了其稳健性,表明 scMCKC 在聚类分析方面表现出全面的优异性能。对十一个数据集的消融研究证明了新的细胞级紧致性约束有助于聚类结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验