Suppr超能文献

SSAGCN:用于行人轨迹预测的社交软注意力图卷积网络

SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian Trajectory Prediction.

作者信息

Lv Pei, Wang Wentong, Wang Yunxin, Zhang Yuzhen, Xu Mingliang, Xu Changsheng

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):11989-12003. doi: 10.1109/TNNLS.2023.3250485. Epub 2024 Sep 3.

Abstract

Pedestrian trajectory prediction is an important technique of autonomous driving. In order to accurately predict the reasonable future trajectory of pedestrians, it is inevitable to consider social interactions among pedestrians and the influence of surrounding scene simultaneously, which can fully represent the complex behavior information and ensure the rationality of predicted trajectories obeyed realistic rules. In this article, we propose one new prediction model named social soft attention graph convolution network (SSAGCN), which aims to simultaneously handle social interactions among pedestrians and scene interactions between pedestrians and environments. In detail, when modeling social interaction, we propose a new social soft attention function, which fully considers various interaction factors among pedestrians. Also, it can distinguish the influence of pedestrians around the agent based on different factors under various situations. For the scene interaction, we propose one new sequential scene sharing mechanism. The influence of the scene on one agent at each moment can be shared with other neighbors through social soft attention; therefore, the influence of the scene is expanded both in spatial and temporal dimensions. With the help of these improvements, we successfully obtain socially and physically acceptable predicted trajectories. The experiments on public available datasets prove the effectiveness of SSAGCN and have achieved state-of-the-art results. The project code is available at https://github.com/WW-Tong/ssagcn_for_path_prediction.

摘要

行人轨迹预测是自动驾驶的一项重要技术。为了准确预测行人合理的未来轨迹,不可避免地要同时考虑行人之间的社会交互以及周围场景的影响,这能够充分表征复杂的行为信息,并确保预测轨迹的合理性符合现实规则。在本文中,我们提出了一种名为社会软注意力图卷积网络(SSAGCN)的新预测模型,旨在同时处理行人之间的社会交互以及行人与环境之间的场景交互。具体而言,在对社会交互进行建模时,我们提出了一种新的社会软注意力函数,该函数充分考虑了行人之间的各种交互因素。此外,它能够基于不同情况下的不同因素区分智能体周围行人的影响。对于场景交互,我们提出了一种新的顺序场景共享机制。场景在每个时刻对一个智能体的影响可以通过社会软注意力与其他邻居共享;因此,场景的影响在空间和时间维度上都得到了扩展。借助这些改进,我们成功获得了在社会和物理层面上都可接受的预测轨迹。在公开可用数据集上进行的实验证明了SSAGCN的有效性,并取得了领先的成果。该项目代码可在https://github.com/WW-Tong/ssagcn_for_path_prediction获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验