Suppr超能文献

基于韩国肾细胞癌数据库(KORCC)的机器学习预测肾细胞癌手术后的肿瘤学结局。

Machine learning based prediction for oncologic outcomes of renal cell carcinoma after surgery using Korean Renal Cell Carcinoma (KORCC) database.

机构信息

Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.

Department of Urology, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Sci Rep. 2023 Apr 8;13(1):5778. doi: 10.1038/s41598-023-30826-2.

Abstract

We developed a novel prediction model for recurrence and survival in patients with localized renal cell carcinoma (RCC) after surgery and a novel statistical method of machine learning (ML) to improve accuracy in predicting outcomes using a large Asian nationwide dataset, updated KOrean Renal Cell Carcinoma (KORCC) database that covered data for a total of 10,068 patients who had received surgery for RCC. After data pre-processing, feature selection was performed with an elastic net. Nine variables for recurrence and 13 variables for survival were extracted from 206 variables. Synthetic minority oversampling technique (SMOTE) was used for the training data set to solve the imbalance problem. We applied the most of existing ML algorithms introduced so far to evaluate the performance. We also performed subgroup analysis according to the histologic type. Diagnostic performances of all prediction models achieved high accuracy (range, 0.77-0.94) and F1-score (range, 0.77-0.97) in all tested metrics. In an external validation set, high accuracy and F1-score were well maintained in both recurrence and survival. In subgroup analysis of both clear and non-clear cell type RCC group, we also found a good prediction performance.

摘要

我们开发了一种新的预测模型,用于预测手术后局限性肾细胞癌(RCC)患者的复发和生存情况,并采用一种新的机器学习(ML)统计方法,利用大型亚洲全国性数据集,即更新的韩国肾细胞癌(KORCC)数据库来提高预测结果的准确性,该数据库涵盖了总共 10068 名接受 RCC 手术治疗的患者的数据。在数据预处理之后,使用弹性网络进行特征选择。从 206 个变量中提取了 9 个用于复发的变量和 13 个用于生存的变量。为了解决不平衡问题,在训练数据集上使用了合成少数过采样技术(SMOTE)。我们应用了迄今为止介绍的大多数现有 ML 算法来评估性能。我们还根据组织学类型进行了亚组分析。在所有测试指标中,所有预测模型的诊断性能均达到了较高的准确性(范围为 0.77-0.94)和 F1 分数(范围为 0.77-0.97)。在外部验证集中,复发和生存的准确性和 F1 分数都得到了很好的保持。在透明细胞和非透明细胞 RCC 组的亚组分析中,我们也发现了良好的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/783c/10082844/0326e5118c04/41598_2023_30826_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验