Hu Yan, Ma Sai, Kartha Vinay K, Duarte Fabiana M, Horlbeck Max, Zhang Ruochi, Shrestha Rojesh, Labade Ajay, Kletzien Heidi, Meliki Alia, Castillo Andrew, Durand Neva, Mattei Eugenio, Anderson Lauren J, Tay Tristan, Earl Andrew S, Shoresh Noam, Epstein Charles B, Wagers Amy, Buenrostro Jason D
Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
bioRxiv. 2023 Mar 29:2023.03.28.533945. doi: 10.1101/2023.03.28.533945.
-regulatory elements control gene expression and are dynamic in their structure, reflecting changes to the composition of diverse effector proteins over time. Here we sought to connect the structural changes at regulatory elements to alterations in cellular fate and function. To do this we developed PRINT, a computational method that uses deep learning to correct sequence bias in chromatin accessibility data and identifies multi-scale footprints of DNA-protein interactions. We find that multi-scale footprints enable more accurate inference of TF and nucleosome binding. Using PRINT with single-cell multi-omics, we discover wide-spread changes to the structure and function of candidate -regulatory elements (cCREs) across hematopoiesis, wherein nucleosomes slide, expose DNA for TF binding, and promote gene expression. Activity segmentation using the co-variance across cell states identifies "sub-cCREs" as modular cCRE subunits of regulatory DNA. We apply this single-cell and PRINT approach to characterize the age-associated alterations to cCREs within hematopoietic stem cells (HSCs). Remarkably, we find a spectrum of aging alterations among HSCs corresponding to a global gain of sub-cCRE activity while preserving cCRE accessibility. Collectively, we reveal the functional importance of cCRE structure across cell states, highlighting changes to gene regulation at single-cell and single-base-pair resolution.
调控元件控制基因表达,其结构具有动态性,反映了不同效应蛋白组成随时间的变化。在这里,我们试图将调控元件的结构变化与细胞命运和功能的改变联系起来。为此,我们开发了PRINT,这是一种计算方法,利用深度学习来校正染色质可及性数据中的序列偏差,并识别DNA-蛋白质相互作用的多尺度足迹。我们发现多尺度足迹能够更准确地推断转录因子(TF)和核小体的结合情况。将PRINT应用于单细胞多组学研究,我们发现造血过程中候选调控元件(cCRE)的结构和功能发生了广泛变化,其中核小体滑动,暴露DNA以供TF结合,并促进基因表达。利用跨细胞状态的协方差进行活性分割,可将“亚cCRE”识别为调控DNA的模块化cCRE亚基。我们应用这种单细胞和PRINT方法来表征造血干细胞(HSC)内cCRE与年龄相关的变化。值得注意的是,我们在HSC中发现了一系列衰老变化,对应于亚cCRE活性的整体增加,同时保留了cCRE的可及性。总体而言,我们揭示了cCRE结构在不同细胞状态下的功能重要性,突出了在单细胞和单碱基对分辨率下基因调控的变化。