Suppr超能文献

采用积木式方法设计适用于 Flying-V 飞机的抗鸟撞耐撞性。

Design for bird strike crashworthiness using a building block approach applied to the Flying-V aircraft.

作者信息

Chen Sian Ying, van de Waerdt Wydo, Castro Saullo G P

机构信息

Fokker Aerostructures B.V., Edisonstraat 1, 7903 AN Hoogeveen, the Netherlands.

Department of Aerospace Structures and Materials, Delft University of Technology, 2629HS Delft, the Netherlands.

出版信息

Heliyon. 2023 Mar 21;9(4):e14723. doi: 10.1016/j.heliyon.2023.e14723. eCollection 2023 Apr.

Abstract

The Flying-V aircraft concept promises better fuel-burn performance over conventional tube-and-wing configurations, integrating the passenger cabin and cargo volume into the lifting surface. However, the wing-fuselage and cockpit windows of the Flying-V are exposed to the flight direction, posing a new challenge to the design and certification of structures in terms of bird strikes. This study is a first step towards understanding the dynamic load path and contribution of each structural element on the bird strike resistance of the Flying-V leading-edge structures. The objective is to propose a building block approach to design the Flying-V's leading edge bird strike crashworthiness that complies with the EASA's certification CS25.631 using a 4lb bird impacted at a sea level cruising speed of 70 m/s. An additional requirement by the authors is to keep the structure within the elastic deformation during the impact of a 4lb bird to avoid the need for repairs in the Flying-V fuselage. Plasticity generated in the structure is regarded as damage and is used as a comparative parameter. At the highest building block level, a sensitivity analysis is performed to identify the effect of the thickness of each structural element on the plasticity and weight of the leading-edge structures. The trends are used to modify the baseline design and achieve a reduction of 80% of the plastic energy. The critical case of a 133 m/s impact of a 4lb bird at the cruise altitude of 37000 ft is also evaluated, and the results show penetration.

摘要

飞翼式飞机概念相较于传统的管翼式构型,有望实现更好的燃油燃烧性能,它将客舱和货舱容积整合到了升力面中。然而,飞翼式飞机的机翼机身和驾驶舱窗户暴露于飞行方向,这在鸟击方面给结构的设计和认证带来了新挑战。本研究是迈向了解飞翼式飞机前缘结构鸟击抗力中各结构元件的动态载荷路径及贡献的第一步。目标是提出一种积木式方法,以设计符合欧洲航空安全局(EASA)CS25.631认证要求的飞翼式飞机前缘鸟击抗撞性,该认证要求使用一只4磅重的鸟以70米/秒的海平面巡航速度撞击。作者的另一项要求是,在4磅重的鸟撞击期间,使结构保持在弹性变形范围内,以避免飞翼式飞机机身需要维修。结构中产生的塑性被视为损伤,并用作比较参数。在最高积木块级别,进行敏感性分析,以确定每个结构元件的厚度对前缘结构的塑性和重量的影响。利用这些趋势修改基线设计,并实现塑性能量降低80%。还评估了在37000英尺巡航高度下,一只4磅重的鸟以133米/秒的速度撞击的关键情况,结果显示出现了穿透。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验