Suppr超能文献

一种硫杂环醌阴极,用于实现高倍率和长循环水系锌有机电池。

A Sulfur Heterocyclic Quinone Cathode Towards High-Rate and Long-Cycle Aqueous Zn-Organic Batteries.

机构信息

National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China.

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.

出版信息

Adv Mater. 2023 Jun;35(22):e2301088. doi: 10.1002/adma.202301088. Epub 2023 Apr 21.

Abstract

Organic materials have attracted much attention in aqueous zinc-ion batteries (AZIBs) due to their sustainability and structure-designable, but their further development is hindered by the high solubility, poor conductivity, and low utilization of active groups, resulting in poor cycling stability, terrible rate capability, and low capacity. In order to solve these three major obstacles, a novel organic host, benzo[b]naphtho[2',3':5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexone (BNDTH), with abundant electroactive groups and stable extended π-conjugated structure is synthesized and composited with reduced graphene oxide (RGO) through a solvent exchange composition method to act as the cathode material for AZIBs. The well-designed BNDTH/RGO composite exhibits a high capacity of 296 mAh g (nearly a full utilization of the active groups), superior rate capability of 120 mAh g , and a long lifetime of 58 000 cycles with a capacity retention of 65% at 10 A g . Such excellent performance can be attributed to the ingenious structural design of the active molecule, as well as the unique solvent exchange composition strategy that enables effective dispersion of excess charge on the active molecule during discharge/charge process. This work provides important insights for the rational design of organic cathode materials and has significant guidance for realizing ideal high performance in AZIBs.

摘要

有机材料因其可持续性和结构可设计性而在水系锌离子电池 (AZIBs) 中受到广泛关注,但由于其活性基团的高溶解度、差导电性和低利用率,其进一步发展受到阻碍,导致循环稳定性差、倍率性能差和容量低。为了解决这三个主要障碍,合成了一种新型有机主体苯并[b]萘[2',3':5,6][1,4]二噻吩并[2,3-i]噻蒽-5,7,9,14,16,18-六酮(BNDTH),它具有丰富的电活性基团和稳定的扩展π共轭结构,并通过溶剂交换组成方法与还原氧化石墨烯(RGO)复合,用作 AZIBs 的阴极材料。设计良好的 BNDTH/RGO 复合材料表现出 296 mAh g 的高容量(几乎充分利用了活性基团)、120 mAh g 的卓越倍率性能和 58000 次循环的长寿命,在 10 A g 时容量保持率为 65%。如此优异的性能可归因于活性分子的巧妙结构设计,以及独特的溶剂交换组成策略,该策略可在放电/充电过程中有效分散活性分子上的过量电荷。这项工作为有机阴极材料的合理设计提供了重要的见解,并对实现 AZIBs 的理想高性能具有重要的指导意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验