Suppr超能文献

丝裂原活化蛋白激酶 Slt2 促进缺乏蛋白磷酸酶 Ptc1 的酵母中不对称细胞周期停滞,并降低 TORC1-Sch9 信号传导。

The Mitogen-Activated Protein Kinase Slt2 Promotes Asymmetric Cell Cycle Arrest and Reduces TORC1-Sch9 Signaling in Yeast Lacking the Protein Phosphatase Ptc1.

机构信息

Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain.

出版信息

Microbiol Spectr. 2023 Jun 15;11(3):e0524922. doi: 10.1128/spectrum.05249-22. Epub 2023 Apr 12.

Abstract

Mitogen-activated protein kinase (MAPK) pathways regulate essential processes in eukaryotes. However, since uncontrolled activation of these cascades has deleterious effects, precise negative regulation of signaling flow through them, mainly executed by protein phosphatases, is crucial. Previous studies showed that the absence of Ptc1 protein phosphatase results in the upregulation of the MAPK of the cell wall integrity (CWI) pathway, Slt2, and numerous functional defects in Saccharomyces cerevisiae, including a failure to undergo cell separation under heat stress. In this study, we demonstrate that multibudded Δ cells also exhibit impaired mitochondrial inheritance and that excessive Slt2 kinase activity is responsible for their growth deficiency and daughter-specific G cell cycle arrest, as well as other physiological alterations, namely, mitochondrial hyperpolarization and reactive oxygen species (ROS) accumulation. We bring to light the fact that sustained Slt2 kinase activity inhibits signaling through the Sch9 branch of the TORC1 pathway in Δ cells, leading to increased autophagy. After cytokinesis, septin rings asymmetrically disassembled in Δ multibudded cells, abnormally remaining at the daughter cell side and eventually relocalizing at the daughter cell periphery, where they occasionally colocalized with the autophagic protein Atg9. Finally, we show that the inability of Δ cells to undergo cell separation is not due to a failure in the regulation of Ace2 and morphogenesis (RAM) pathway, since the transcription factor Ace2 correctly enters the daughter cell nuclei. However, the Ace2-regulated endochitinase Cts1 did not localize to the septum, preventing the proper degradation of this structure. This study provides further evidence that the cell cycle is regulated by complex signaling networks whose purpose is to guarantee a robust response to environmental threats. Using the S. cerevisiae eukaryotic model, we show that, under the stress conditions that activate the CWI MAPK pathway, the absence of the protein phosphatase Ptc1 renders Slt2 hyperactive, leading to numerous physiological alterations, including perturbed mitochondrial inheritance, oxidative stress, changes in septin dynamics, increased autophagy, TORC1-Sch9 inhibition, and ultimately cell cycle arrest and the failure of daughter cells to separate, likely due to the absence of key degradative enzymes at the septum. These results imply novel roles for the CWI pathway and unravel new cell cycle-regulatory controls that operate beyond the RAM pathway, arresting buds in G without compromising further division rounds in the mother cell.

摘要

丝裂原活化蛋白激酶 (MAPK) 途径调节真核生物的基本过程。然而,由于这些级联的不受控制的激活会产生有害影响,因此通过蛋白磷酸酶对信号流进行精确的负调控至关重要。先前的研究表明,Ptc1 蛋白磷酸酶的缺失会导致细胞壁完整性 (CWI) 途径的 MAPK、Slt2 的上调,以及酿酒酵母中许多功能缺陷,包括在热应激下无法进行细胞分离。在这项研究中,我们证明了多芽 Δ 细胞也表现出线粒体遗传受损,并且过量的 Slt2 激酶活性是其生长缺陷和子细胞特异性 G 细胞周期停滞以及其他生理改变的原因,即线粒体超极化和活性氧物质 (ROS) 积累。我们揭示了这样一个事实,即持续的 Slt2 激酶活性抑制了 Δ 细胞中 TORC1 途径的 Sch9 分支的信号传递,导致自噬增加。有丝分裂后,在 Δ 多芽细胞中,隔膜环不对称地解体,异常地留在子细胞一侧,最终重新定位到子细胞外周,在那里它们偶尔与自噬蛋白 Atg9 共定位。最后,我们表明,Δ 细胞无法进行细胞分离并不是由于 Ace2 和形态发生 (RAM) 途径的调节失败,因为转录因子 Ace2 正确进入子细胞核。然而,Ace2 调节的内切几丁质酶 Cts1 没有定位到隔膜,阻止了该结构的适当降解。这项研究进一步证明了细胞周期受到复杂信号网络的调节,其目的是确保对环境威胁做出稳健的反应。使用酿酒酵母真核模型,我们表明,在激活 CWI MAPK 途径的应激条件下,蛋白磷酸酶 Ptc1 的缺失使 Slt2 过度活跃,导致许多生理改变,包括线粒体遗传受损、氧化应激、隔膜动力学变化、自噬增加、TORC1-Sch9 抑制,最终细胞周期停滞和子细胞无法分离,可能是由于隔膜缺乏关键的降解酶。这些结果为 CWI 途径提供了新的作用,并揭示了超越 RAM 途径的新的细胞周期调控控制,在不影响母细胞进一步分裂轮次的情况下,将芽停滞在 G 期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bed/10269544/59a7559e9b23/spectrum.05249-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验