Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, College of Sciences, Auckland Campus, Auckland 0632, New Zealand.
Sensors (Basel). 2023 Mar 24;23(7):3419. doi: 10.3390/s23073419.
Automated hand gesture recognition is a key enabler of Human-to-Machine Interfaces (HMIs) and smart living. This paper reports the development and testing of a static hand gesture recognition system using capacitive sensing. Our system consists of a 6×18 array of capacitive sensors that captured five gestures-Palm, Fist, Middle, OK, and Index-of five participants to create a dataset of gesture images. The dataset was used to train Decision Tree, Naïve Bayes, Multi-Layer Perceptron (MLP) neural network, and Convolutional Neural Network (CNN) classifiers. Each classifier was trained five times; each time, the classifier was trained using four different participants' gestures and tested with one different participant's gestures. The MLP classifier performed the best, achieving an average accuracy of 96.87% and an average F1 score of 92.16%. This demonstrates that the proposed system can accurately recognize hand gestures and that capacitive sensing is a viable method for implementing a non-contact, static hand gesture recognition system.
自动手势识别是人机界面 (HMI) 和智能生活的关键推动因素。本文报告了一种使用电容感应的静态手势识别系统的开发和测试。我们的系统由一个 6×18 阵列的电容传感器组成,该传感器捕获了五个参与者的五个手势——手掌、拳头、中指、OK 和食指——以创建手势图像数据集。该数据集用于训练决策树、朴素贝叶斯、多层感知机 (MLP) 神经网络和卷积神经网络 (CNN) 分类器。每个分类器都训练了五次;每次,分类器使用四个不同参与者的手势进行训练,并使用一个不同参与者的手势进行测试。MLP 分类器表现最好,平均准确率为 96.87%,平均 F1 得分为 92.16%。这表明所提出的系统可以准确识别手势,并且电容感应是实现非接触式静态手势识别系统的可行方法。