Suppr超能文献

基于电容式感应和机器学习的静态手势识别。

Static Hand Gesture Recognition Using Capacitive Sensing and Machine Learning.

机构信息

Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, College of Sciences, Auckland Campus, Auckland 0632, New Zealand.

出版信息

Sensors (Basel). 2023 Mar 24;23(7):3419. doi: 10.3390/s23073419.

Abstract

Automated hand gesture recognition is a key enabler of Human-to-Machine Interfaces (HMIs) and smart living. This paper reports the development and testing of a static hand gesture recognition system using capacitive sensing. Our system consists of a 6×18 array of capacitive sensors that captured five gestures-Palm, Fist, Middle, OK, and Index-of five participants to create a dataset of gesture images. The dataset was used to train Decision Tree, Naïve Bayes, Multi-Layer Perceptron (MLP) neural network, and Convolutional Neural Network (CNN) classifiers. Each classifier was trained five times; each time, the classifier was trained using four different participants' gestures and tested with one different participant's gestures. The MLP classifier performed the best, achieving an average accuracy of 96.87% and an average F1 score of 92.16%. This demonstrates that the proposed system can accurately recognize hand gestures and that capacitive sensing is a viable method for implementing a non-contact, static hand gesture recognition system.

摘要

自动手势识别是人机界面 (HMI) 和智能生活的关键推动因素。本文报告了一种使用电容感应的静态手势识别系统的开发和测试。我们的系统由一个 6×18 阵列的电容传感器组成,该传感器捕获了五个参与者的五个手势——手掌、拳头、中指、OK 和食指——以创建手势图像数据集。该数据集用于训练决策树、朴素贝叶斯、多层感知机 (MLP) 神经网络和卷积神经网络 (CNN) 分类器。每个分类器都训练了五次;每次,分类器使用四个不同参与者的手势进行训练,并使用一个不同参与者的手势进行测试。MLP 分类器表现最好,平均准确率为 96.87%,平均 F1 得分为 92.16%。这表明所提出的系统可以准确识别手势,并且电容感应是实现非接触式静态手势识别系统的可行方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31c7/10099234/27f38393610a/sensors-23-03419-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验