Suppr超能文献

估算中国山东省在气候缓解和人口变化情景下未来由 PM 引起的急性心肌梗死发病病例。

Estimating future PM-attributed acute myocardial infarction incident cases under climate mitigation and population change scenarios in Shandong Province, China.

机构信息

Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China.

出版信息

Ecotoxicol Environ Saf. 2023 May;256:114893. doi: 10.1016/j.ecoenv.2023.114893. Epub 2023 Apr 12.

Abstract

BACKGROUND

The effects of fine particulate matter (PM) on acute myocardial infarction (AMI) have been widely recognized. However, no studies have comprehensively evaluated future PM-attributed AMI burdens under different climate mitigation and population change scenarios. We aimed to quantify the PM-AMI association and estimate the future change in PM-attributed AMI incident cases under six integrated scenarios in 2030 and 2060 in Shandong Province, China.

METHODS

Daily AMI incident cases and air pollutant data were collected from 136 districts/counties in Shandong Province from 2017 - 2019. A two-stage analysis with a distributed lag nonlinear model was conducted to quantify the baseline PM-AMI association. The future change in PM-attributed AMI incident cases was estimated by combining the fitted PM-AMI association with the projected daily PM concentrations under six integrated scenarios. We further analyzed the factors driving changes in PM-related AMI incidence using a decomposition method.

RESULTS

Each 10 μg/m increase in PM exposure at lag05 was related to an excess risk of 1.3 % (95 % confidence intervals: 0.9 %, 1.7 %) for AMI incidence from 2017 - 2019 in Shandong Province. The estimated total PM-attributed AMI incident cases would increase by 10.9-125.9 % and 6.4-244.6 % under Scenarios 1 - 3 in 2030 and 2060, whereas they would decrease by 0.9-5.2 % and 33.0-46.2 % under Scenarios 5 - 6 in 2030 and 2060, respectively. Furthermore, the percentage increases in PM-attributed female cases (2030: -0.3 % to 135.1 %; 2060: -33.2 % to 321.5 %) and aging cases (2030: 15.2-171.8 %; 2060: -21.5 % to 394.2 %) would wholly exceed those in male cases (2030: -1.8 % to 133.2 %; 2060: -41.1 % to 264.3 %) and non-aging cases (2030: -41.0 % to 45.7 %; 2060: -89.5 % to -17.0 %) under six scenarios in 2030 and 2060. Population aging is the main driver of increased PM-related AMI incidence under Scenarios 1 - 3 in 2030 and 2060, while improved air quality can offset these negative effects of population aging under the implementation of the carbon neutrality and 1.5 °C targets.

CONCLUSION

The combination of ambitious climate policies (i.e., 1.5 °C warming limits and carbon neutrality targets) with stringent clean air policies is necessary to reduce the health impacts of air pollution in Shandong Province, China, regardless of population aging.

摘要

背景

细颗粒物(PM)对急性心肌梗死(AMI)的影响已得到广泛认可。然而,目前尚无研究综合评估在不同气候缓解和人口变化情景下未来由 PM 引起的 AMI 负担。我们旨在量化 PM-AMI 关联,并估计 2030 年和 2060 年在中国山东省六个综合情景下 PM 归因的 AMI 事件的未来变化。

方法

从 2017 年至 2019 年,从山东省 136 个区/县收集每日 AMI 事件和空气污染物数据。采用两阶段分析,使用分布式滞后非线性模型来量化基线 PM-AMI 关联。通过将拟合的 PM-AMI 关联与六个综合情景下预测的每日 PM 浓度相结合,估计 PM 归因的 AMI 事件的未来变化。我们进一步使用分解方法分析了导致 PM 相关 AMI 发病率变化的因素。

结果

在山东省,PM 暴露每增加 10μg/m,与 2017 年至 2019 年 AMI 发病率的超额风险增加 1.3%(95%置信区间:0.9%,1.7%)。在情景 1 至 3 下,预计 2030 年和 2060 年的总 PM 归因 AMI 事件将分别增加 10.9-125.9%和 6.4-244.6%,而在情景 5 至 6 下,2030 年和 2060 年的 PM 归因 AMI 事件将分别减少 0.9-5.2%和 33.0-46.2%。此外,PM 归因于女性病例(2030 年:-0.3%至 135.1%;2060 年:-33.2%至 321.5%)和老龄化病例(2030 年:15.2-171.8%;2060 年:-21.5%至 394.2%)的百分比增加将完全超过男性病例(2030 年:-1.8%至 133.2%;2060 年:-41.1%至 264.3%)和非老龄化病例(2030 年:-41.0%至 45.7%;2060 年:-89.5%至-17.0%)。在 2030 年和 2060 年的六个情景下,人口老龄化是情景 1 至 3 下 2030 年和 2060 年 PM 相关 AMI 发病率增加的主要驱动因素,而在实施碳中和和 1.5°C 目标的情况下,空气质量的改善可以抵消人口老龄化的这些负面影响。

结论

无论人口老龄化如何,将雄心勃勃的气候政策(即 1.5°C 升温限制和碳中和目标)与严格的清洁空气政策相结合,是减少中国山东省空气污染对健康影响的必要条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验