Suppr超能文献

一种多模态机器学习方法,用于检测西西里岛的极端降雨事件。

A multi-modal machine learning approach to detect extreme rainfall events in Sicily.

机构信息

Department of Information Engineering and Mathematics, University of Siena, Via Roma, 56, 53100, Siena, Italy.

出版信息

Sci Rep. 2023 Apr 16;13(1):6196. doi: 10.1038/s41598-023-33160-9.

Abstract

In 2021 almost 300 mm of rain, nearly half of the average annual rainfall, fell near Catania (Sicily Island, Italy). Such events took place in just a few hours, with dramatic consequences on the environmental, social, economic, and health systems of the region. These phenomena are now very common in various countries all around the world: this is the reason why, detecting local extreme rainfall events is a crucial prerequisite for planning actions, able to reverse possibly intensified dramatic future scenarios. In this paper, the Affinity Propagation algorithm, a clustering algorithm grounded on machine learning, was applied, to the best of our knowledge, for the first time, to detect extreme rainfall areas in Sicily. This was possible by using a high-frequency, large dataset we collected, ranging from 2009 to 2021 which we named RSE (the Rainfall Sicily Extreme dataset). Weather indicators were then been employed to validate the results, thus confirming the presence of recent anomalous rainfall events in eastern Sicily. We believe that easy-to-use and multi-modal data science techniques, such as the one proposed in this study, could give rise to significant improvements in policy-making for successfully contrasting climate change.

摘要

2021 年,卡塔尼亚(意大利西西里岛)附近的降雨量达到近 300 毫米,接近年平均降雨量的一半。这些事件仅在数小时内发生,对该地区的环境、社会、经济和卫生系统造成了巨大影响。如今,这种现象在世界各国已十分常见:这就是为什么检测当地极端降雨事件是规划行动的关键前提,能够扭转可能加剧的未来极端情况。在本文中,我们首次应用了基于机器学习的亲和传播算法来检测西西里岛的极端降雨区域。这是通过使用我们收集的高频、大数据集 RSE(西西里岛极端降雨数据集)实现的。然后,我们使用天气指标对结果进行验证,从而确认了西西里岛东部最近发生的异常降雨事件。我们相信,像本研究中提出的这种易于使用和多模式的数据科学技术,可以显著提高应对气候变化的政策制定水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5876/10106478/ed88423a309f/41598_2023_33160_Fig1_HTML.jpg

相似文献

1
A multi-modal machine learning approach to detect extreme rainfall events in Sicily.
Sci Rep. 2023 Apr 16;13(1):6196. doi: 10.1038/s41598-023-33160-9.
2
Machine learning-based assessment of long-term climate variability of Kerala.
Environ Monit Assess. 2022 Jun 13;194(7):498. doi: 10.1007/s10661-022-10011-0.
4
A downscaling-disaggregation approach for developing IDF curves in arid regions.
Environ Monit Assess. 2019 Mar 26;191(4):245. doi: 10.1007/s10661-019-7385-4.
5
Rainfall Prediction System Using Machine Learning Fusion for Smart Cities.
Sensors (Basel). 2022 May 4;22(9):3504. doi: 10.3390/s22093504.
6
Extreme rainfall trends of 21 typical urban areas in China during 1998-2015 based on remotely sensed data sets.
Environ Monit Assess. 2019 Nov 1;191(12):709. doi: 10.1007/s10661-019-7900-7.
10
Reconstruction of Extreme Rainfall Event on September 19-20, 2017, Using a Weather Radar in Bengkulu of Sumatra Island.
ScientificWorldJournal. 2020 Jul 8;2020:1639054. doi: 10.1155/2020/1639054. eCollection 2020.

引用本文的文献

1
Studying extreme events: An interdisciplinary review of recent research.
Heliyon. 2024 Dec 6;10(24):e41024. doi: 10.1016/j.heliyon.2024.e41024. eCollection 2024 Dec 30.
2
Precision agriculture for wine production: A machine learning approach to link weather conditions and wine quality.
Heliyon. 2024 May 21;10(11):e31648. doi: 10.1016/j.heliyon.2024.e31648. eCollection 2024 Jun 15.
3
A machine learning approach to assess Sustainable Development Goals food performances: The Italian case.
PLoS One. 2024 Jan 2;19(1):e0296465. doi: 10.1371/journal.pone.0296465. eCollection 2024.

本文引用的文献

2
Adapting to the challenges of warming.
Science. 2020 Nov 13;370(6518):782-783. doi: 10.1126/science.abe4479.
3
Climate tipping points - too risky to bet against.
Nature. 2019 Nov;575(7784):592-595. doi: 10.1038/d41586-019-03595-0.
4
What precipitation is extreme?
Science. 2018 Jun 8;360(6393):1072-1073. doi: 10.1126/science.aat1871.
5
CLIMATE CHANGE. How climate change affects extreme weather events.
Science. 2016 Jun 24;352(6293):1517-8. doi: 10.1126/science.aaf7271. Epub 2016 Jun 23.
6
Jaccard index based similarity measure to compare transcription factor binding site models.
Algorithms Mol Biol. 2013 Sep 30;8(1):23. doi: 10.1186/1748-7188-8-23.
7
The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods.
Conserv Biol. 2009 Jun;23(3):520-30. doi: 10.1111/j.1523-1739.2009.01237.x.
8
Identifying the dynamics of complex spatio-temporal systems by spatial recurrence properties.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8097-102. doi: 10.1073/pnas.0910414107. Epub 2010 Apr 19.
9
The next generation of scenarios for climate change research and assessment.
Nature. 2010 Feb 11;463(7282):747-56. doi: 10.1038/nature08823.
10
Clustering by passing messages between data points.
Science. 2007 Feb 16;315(5814):972-6. doi: 10.1126/science.1136800. Epub 2007 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验