Suppr超能文献

利用三轴加速度数据和机器学习对野生南非大狒狒()中的异体梳理行为进行量化。

Quantifying allo-grooming in wild chacma baboons () using tri-axial acceleration data and machine learning.

作者信息

Christensen Charlotte, Bracken Anna M, O'Riain M Justin, Fehlmann Gaëlle, Holton Mark, Hopkins Phillip, King Andrew J, Fürtbauer Ines

机构信息

Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK.

Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich 8057, Switzerland.

出版信息

R Soc Open Sci. 2023 Apr 12;10(4):221103. doi: 10.1098/rsos.221103. eCollection 2023 Apr.

Abstract

Quantification of activity budgets is pivotal for understanding how animals respond to changes in their environment. Social grooming is a key activity that underpins various social processes with consequences for health and fitness. Traditional methods use direct (focal) observations to calculate grooming rates, providing systematic but sparse data. Accelerometers, in contrast, can quantify activity budgets continuously but have not been used to quantify social grooming. We test whether grooming can be accurately identified using machine learning (random forest model) trained on labelled acceleration data from wild chacma baboons (). We successfully identified giving and receiving grooming with high precision (81% and 91%) and recall (87% and 79%). Giving grooming was associated with a distinct rhythmical signal along the surge axis. Receiving grooming had similar acceleration signals to resting, and thus was more difficult to assign. We applied our machine learning model to = 680 collar data days from = 12 baboons and found that grooming rates obtained from accelerometers were significantly and positively correlated with direct observation rates for giving but not receiving grooming. The ability to collect continuous grooming data in wild populations will allow researchers to re-examine and expand upon long-standing questions regarding the formation and function of grooming bonds.

摘要

量化活动预算对于理解动物如何应对环境变化至关重要。社交梳理是一项关键活动,它支撑着各种社会过程,对健康和适应性有影响。传统方法使用直接(焦点)观察来计算梳理率,提供了系统但稀疏的数据。相比之下,加速度计可以连续量化活动预算,但尚未用于量化社交梳理。我们测试了是否可以使用基于野生 chacma 狒狒标记加速度数据训练的机器学习(随机森林模型)准确识别梳理行为。我们成功地高精度(81% 和 91%)和召回率(87% 和 79%)识别了给予和接受梳理行为。给予梳理行为与沿着激增轴的独特节奏信号相关。接受梳理行为的加速度信号与休息时相似,因此更难确定。我们将机器学习模型应用于来自 12 只狒狒的 680 个项圈数据日,发现从加速度计获得的梳理率与给予但不是接受梳理行为的直接观察率显著正相关。在野生种群中收集连续梳理数据的能力将使研究人员能够重新审视并扩展关于梳理关系形成和功能的长期问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5874/10090879/ea3609e2a7bc/rsos221103f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验