Dunning Chelsea A S, Rajiah Prabhakar Shantha, Hsieh Scott S, Esquivel Andrea, Yalon Mariana, Weber Nikkole M, Gong Hao, Fletcher Joel G, McCollough Cynthia H, Leng Shuai
Department of Radiology, Mayo Clinic, 200 1 St SW, Rochester, MN, USA 55905.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12465. doi: 10.1117/12.2654412. Epub 2023 Apr 7.
Coronary plaque risk classification in images acquired with photon-counting-detector (PCD) CT was performed using a radiomics-based machine learning (ML) model. With IRB approval, 19 coronary CTA patients were scanned on a PCD-CT (NAEOTOM Alpha, Siemens Healthineers) with median CTDI of 8.02 mGy. Five types of images: virtual monoenergetic images (VMIs) at 50-keV, 70-keV, and 100-keV, iodine maps, and virtual non-contrast (VNC) images were reconstructed using an iterative reconstruction algorithm (QIR), a quantitative kernel (Qr40) and 0.6-mm/0.3-mm slice thickness/increment. Atherosclerotic plaques were segmented using semi-automatic software (Research Frontier, Siemens). Segmentation confirmation and risk stratification (low- vs high-risk) were performed by a board-certified cardiac radiologist. A total of 93 radiomic features were extracted from each image using PyRadiomics (v2.2.0b1). For each feature, a t-test was performed between low- and high-risk plaques (p<0.05 considered significant). Two significant and non-redundant features were input into a support vector machine (SVM). A leave-one-out cross-validation strategy was adopted and the classification accuracy was computed. Fifteen low-risk and ten high-risk plaques were identified by the radiologist. A total of 18, 32, 43, 16, and 55 out of 93 features in 50-keV, 70-keV, 100-keV, iodine map, and VNC images were statistically significant. A total of 17, 19, 22, 20, and 22 out of 25 plaques were classified correctly in 50-keV, 70-keV, 100-keV, iodine map, and VNC images, respectively. A ML model using 100-keV VMIs and VNC images derived from coronary PCD-CTA best automatically differentiated low- and high-risk coronary plaques.
使用基于放射组学的机器学习(ML)模型对光子计数探测器(PCD)CT采集的图像中的冠状动脉斑块风险进行分类。经机构审查委员会(IRB)批准,对19例冠状动脉CT血管造影(CTA)患者进行了PCD-CT(NAEOTOM Alpha,西门子医疗)扫描,平均容积CT剂量指数(CTDI)为8.02毫戈瑞。使用迭代重建算法(QIR)、定量内核(Qr40)和0.6毫米/0.3毫米的层厚/层间距,重建了五种类型的图像:50千电子伏特、70千电子伏特和100千电子伏特的虚拟单能图像(VMI)、碘图和虚拟非增强(VNC)图像。使用半自动软件(Research Frontier,西门子)对动脉粥样硬化斑块进行分割。由一名获得董事会认证的心脏放射科医生进行分割确认和风险分层(低风险与高风险)。使用PyRadiomics(v2.2.0b1)从每张图像中提取总共93个放射组学特征。对于每个特征,在低风险和高风险斑块之间进行t检验(p<0.05认为具有显著性)。将两个显著且非冗余的特征输入支持向量机(SVM)。采用留一法交叉验证策略并计算分类准确率。放射科医生识别出15个低风险斑块和10个高风险斑块。在50千电子伏特、70千电子伏特、100千电子伏特、碘图和VNC图像中,93个特征分别有18个(50千电子伏特)、32个(70千电子伏特)、43个(100千电子伏特)、16个(碘图)和55个(VNC图像)具有统计学显著性。在50千电子伏特、70千电子伏特、100千电子伏特、碘图和VNC图像中,分别有25个斑块中的17个、19个、22个、20个和22个被正确分类。使用源自冠状动脉PCD-CTA的100千电子伏特VMI和VNC图像的ML模型能最佳地自动区分低风险和高风险冠状动脉斑块。