Tezzele Marco, Fabris Lorenzo, Sidari Matteo, Sicchiero Mauro, Rozza Gianluigi
Mathematics Area, mathLab SISSA, Scuola Internazionale Superiore di Studi Avanzati Trieste Italy.
Merchant Ships Business Unit Fincantieri S.p.A. Trieste Italy.
Int J Numer Methods Eng. 2023 Mar 15;124(5):1193-1210. doi: 10.1002/nme.7159. Epub 2022 Nov 15.
Nowadays, the shipbuilding industry is facing a radical change toward solutions with a smaller environmental impact. This can be achieved with low emissions engines, optimized shape designs with lower wave resistance and noise generation, and by reducing the metal raw materials used during the manufacturing. This work focuses on the last aspect by presenting a complete structural optimization pipeline for modern passenger ship hulls which exploits advanced model order reduction techniques to reduce the dimensionality of both input parameters and outputs of interest. We introduce a novel approach which incorporates parameter space reduction through active subspaces into the proper orthogonal decomposition with interpolation method. This is done in a multi-fidelity setting. We test the whole framework on a simplified model of a midship section and on the full model of a passenger ship, controlled by 20 and 16 parameters, respectively. We present a comprehensive error analysis and show the capabilities and usefulness of the methods especially during the preliminary design phase, finding new unconsidered designs while handling high dimensional parameterizations.
如今,造船业正朝着对环境影响更小的解决方案发生根本性转变。这可以通过低排放发动机、具有更低波浪阻力和噪音产生的优化形状设计以及减少制造过程中使用的金属原材料来实现。这项工作聚焦于最后一个方面,通过提出一种针对现代客船船体的完整结构优化流程,该流程利用先进的模型降阶技术来降低输入参数和感兴趣输出的维度。我们引入了一种新颖的方法,该方法通过将主动子空间的参数空间缩减纳入带插值方法的本征正交分解中。这是在多保真度设置下完成的。我们分别在由20个和16个参数控制的船中剖面简化模型和客船全模型上测试了整个框架。我们进行了全面的误差分析,并展示了这些方法的能力和实用性,特别是在初步设计阶段,在处理高维参数化的同时找到新的未考虑设计。