Suppr超能文献

医疗保健中的成像:现状一瞥与未来展望。

Imaging in Healthcare: A Glance at the Present and a Glimpse Into the Future.

作者信息

Nabrawi Eman, Alanazi Abdullah T

机构信息

Department of Health Informatics, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, SAU.

Department of Health Informatics, College of Public Health and Health Informatics, King Saud bin Abdul-Aziz University for Health Science (KSAU-HS), Riyadh, SAU.

出版信息

Cureus. 2023 Mar 14;15(3):e36111. doi: 10.7759/cureus.36111. eCollection 2023 Mar.

Abstract

The utilization of artificial intelligence (AI) applications in medical imaging relies heavily on imaging informatics. That is a one-of-a-kind professional who works at the crossroads of clinical radiography, data science, and information technology. Imaging informaticians are becoming crucial players in expanding, assessing, and implementing AI in the medical setting. Teleradiology will continue to be a cost-effective healthcare facility that expands. Vendor neutral archive (VNA) isolates image presentation and storing systems, permitting platforms to develop quickly, and is a repository for organization-wide healthcare image data. Efforts are made to incorporate and integrate diagnostic facilities such as radiography and pathology to fulfill the needs and demands of targeted therapy. Developments in computer-aided medical object identification may alter the environment of patient services. Finally, interpreting and processing distinct complex healthcare data will create a data-rich context where evidence-based care and performance development may be driven.

摘要

人工智能(AI)应用在医学成像中的利用在很大程度上依赖于成像信息学。成像信息学专家是一类独特的专业人员,他们工作在临床放射学、数据科学和信息技术的交叉领域。在医疗环境中,成像信息学专家正成为扩展、评估和实施人工智能的关键角色。远程放射学将继续成为一个不断扩展的具有成本效益的医疗保健设施。供应商中立存档(VNA)将图像呈现和存储系统分离,使平台能够快速发展,并且是全组织医疗图像数据的存储库。人们努力整合诸如放射学和病理学等诊断设施,以满足靶向治疗的需求。计算机辅助医学对象识别方面的进展可能会改变患者服务的环境。最后,对不同复杂医疗数据的解读和处理将创造一个数据丰富的环境,在此环境中可以推动循证医疗和绩效发展。

相似文献

3
Vendor neutral archive in PACS.PACS中的供应商中立存档。
Indian J Radiol Imaging. 2012 Oct;22(4):242-5. doi: 10.4103/0971-3026.111468.
5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
The impact of artificial intelligence on radiography as a profession: A narrative review.人工智能对放射科专业的影响:叙事性综述。
J Med Imaging Radiat Sci. 2023 Mar;54(1):162-166. doi: 10.1016/j.jmir.2022.10.196. Epub 2022 Nov 12.
9
Medical imaging, PACS, and imaging informatics: retrospective.医学成像、PACS与成像信息学:回顾性研究
Radiol Phys Technol. 2014 Jan;7(1):5-24. doi: 10.1007/s12194-013-0245-y. Epub 2013 Dec 6.

引用本文的文献

7
Deep Learning Approaches for Medical Image Analysis and Diagnosis.用于医学图像分析与诊断的深度学习方法
Cureus. 2024 May 2;16(5):e59507. doi: 10.7759/cureus.59507. eCollection 2024 May.
8
Teleradiology: Geography is now History!远程放射学:地理已成为历史!
Indian J Crit Care Med. 2024 Jan;28(1):1-2. doi: 10.5005/jp-journals-10071-24625.

本文引用的文献

3
Machine Learning and Imaging Informatics in Oncology.肿瘤学中的机器学习和成像信息学。
Oncology. 2020;98(6):344-362. doi: 10.1159/000493575. Epub 2018 Nov 23.
7
Machine Learning for Medical Imaging.用于医学成像的机器学习
Radiographics. 2017 Mar-Apr;37(2):505-515. doi: 10.1148/rg.2017160130. Epub 2017 Feb 17.
9
Imaging Informatics: 25 Years of Progress.影像信息学:25年的进展
Yearb Med Inform. 2016 Jun 30;Suppl 1(Suppl 1):S23-31. doi: 10.15265/IYS-2016-s004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验