Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany.
mBio. 2023 Jun 27;14(3):e0010223. doi: 10.1128/mbio.00102-23. Epub 2023 Apr 19.
Cells stabilize intracellular inorganic phosphate (P) to compromise between large biosynthetic needs and detrimental bioenergetic effects of P. P homeostasis in eukaryotes uses Syg1/Pho81/Xpr1 (SPX) domains, which are receptors for inositol pyrophosphates. We explored how polymerization and storage of P in acidocalcisome-like vacuoles supports Saccharomyces cerevisiae metabolism and how these cells recognize P scarcity. Whereas P starvation affects numerous metabolic pathways, beginning P scarcity affects few metabolites. These include inositol pyrophosphates and ATP, a low-affinity substrate for inositol pyrophosphate-synthesizing kinases. Declining ATP and inositol pyrophosphates may thus be indicators of impending P limitation. Actual P starvation triggers accumulation of the purine synthesis intermediate 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), which activates P-dependent transcription factors. Cells lacking inorganic polyphosphate show P starvation features already under P-replete conditions, suggesting that vacuolar polyphosphate supplies P for metabolism even when P is abundant. However, polyphosphate deficiency also generates unique metabolic changes that are not observed in starving wild-type cells. Polyphosphate in acidocalcisome-like vacuoles may hence be more than a global phosphate reserve and channel P to preferred cellular processes. Cells must strike a delicate balance between the high demand of inorganic phosphate (P) for synthesizing nucleic acids and phospholipids and its detrimental bioenergetic effects by reducing the free energy of nucleotide hydrolysis. The latter may stall metabolism. Therefore, microorganisms manage the import and export of phosphate, its conversion into osmotically inactive inorganic polyphosphates, and their storage in dedicated organelles (acidocalcisomes). Here, we provide novel insights into metabolic changes that yeast cells may use to signal declining phosphate availability in the cytosol and differentiate it from actual phosphate starvation. We also analyze the role of acidocalcisome-like organelles in phosphate homeostasis. This study uncovers an unexpected role of the polyphosphate pool in these organelles under phosphate-rich conditions, indicating that its metabolic roles go beyond that of a phosphate reserve for surviving starvation.
细胞通过稳定细胞内无机磷酸盐(P)来平衡大量生物合成需求和 P 的有害生物能量效应。真核生物的 P 稳态利用 Syg1/Pho81/Xpr1(SPX)结构域,该结构域是肌醇焦磷酸盐的受体。我们探索了 P 在类似液泡的酸性钙颗粒中的聚合和储存如何支持酿酒酵母的新陈代谢,以及这些细胞如何识别 P 缺乏。虽然 P 饥饿会影响许多代谢途径,但开始时 P 缺乏会影响很少的代谢物。这些包括肌醇焦磷酸盐和 ATP,它是肌醇焦磷酸盐合成酶的低亲和力底物。因此,ATP 和肌醇焦磷酸盐的下降可能是 P 限制即将到来的指标。实际的 P 饥饿会触发嘌呤合成中间产物 5-氨基咪唑-4-甲酰胺核糖核苷酸(AICAR)的积累,从而激活 P 依赖性转录因子。即使在 P 丰富的情况下,缺乏无机多磷酸盐的细胞在 P 充足的条件下也表现出 P 饥饿的特征,这表明液泡多磷酸盐即使在 P 丰富的情况下也为新陈代谢提供 P。然而,多磷酸盐的缺乏也会产生在饥饿的野生型细胞中观察不到的独特代谢变化。因此,酸性钙颗粒状液泡中的多磷酸盐可能不仅仅是一种全局磷酸盐储备,而是将 P 输送到首选的细胞过程。细胞必须在合成核酸和磷脂对无机磷酸盐(P)的高需求与其降低核苷酸水解自由能的有害生物能量效应之间取得微妙的平衡。后者可能会使新陈代谢停滞。因此,微生物管理磷酸盐的进出口、将其转化为渗透惰性的无机多磷酸盐,以及将其储存在专用细胞器(酸性钙颗粒)中。在这里,我们提供了酵母细胞可能用于在细胞质中发出磷酸盐可用量下降信号并将其与实际的磷酸盐饥饿区分开来的代谢变化的新见解。我们还分析了类似液泡的细胞器在磷酸盐稳态中的作用。这项研究揭示了在富含磷酸盐的条件下这些细胞器中多磷酸盐池的意外作用,表明其代谢作用超出了在饥饿中存活的磷酸盐储备的作用。