Suppr超能文献

肾切除术后肾细胞癌复发风险的预测:CT放射组学在辅助治疗决策中的潜在作用。

Predicting the recurrence risk of renal cell carcinoma after nephrectomy: potential role of CT-radiomics for adjuvant treatment decisions.

作者信息

Deniffel Dominik, McAlpine Kristen, Harder Felix N, Jain Rahi, Lawson Keith A, Healy Gerard M, Hui Shirley, Zhang Xiaoyu, Salinas-Miranda Emmanuel, van der Kwast Theodorus, Finelli Antonio, Haider Masoom A

机构信息

Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.

出版信息

Eur Radiol. 2023 Aug;33(8):5840-5850. doi: 10.1007/s00330-023-09551-x. Epub 2023 Apr 19.

Abstract

OBJECTIVES

Previous trial results suggest that only a small number of patients with non-metastatic renal cell carcinoma (RCC) benefit from adjuvant therapy. We assessed whether the addition of CT-based radiomics to established clinico-pathological biomarkers improves recurrence risk prediction for adjuvant treatment decisions.

METHODS

This retrospective study included 453 patients with non-metastatic RCC undergoing nephrectomy. Cox models were trained to predict disease-free survival (DFS) using post-operative biomarkers (age, stage, tumor size and grade) with and without radiomics selected on pre-operative CT. Models were assessed using C-statistic, calibration, and decision curve analyses (repeated tenfold cross-validation).

RESULTS

At multivariable analysis, one of four selected radiomic features (wavelet-HHL_glcm_ClusterShade) was prognostic for DFS with an adjusted hazard ratio (HR) of 0.44 (p = 0.02), along with American Joint Committee on Cancer (AJCC) stage group (III versus I, HR 2.90; p = 0.002), grade 4 (versus grade 1, HR 8.90; p = 0.001), age (per 10 years HR 1.29; p = 0.03), and tumor size (per cm HR 1.13; p = 0.003). The discriminatory ability of the combined clinical-radiomic model (C = 0.80) was superior to that of the clinical model (C = 0.78; p < 0.001). Decision curve analysis revealed a net benefit of the combined model when used for adjuvant treatment decisions. At an exemplary threshold probability of ≥ 25% for disease recurrence within 5 years, using the combined versus the clinical model was equivalent to treating 9 additional patients (per 1000 assessed) who would recur without treatment (i.e., true-positive predictions) with no increase in false-positive predictions.

CONCLUSION

Adding CT-based radiomic features to established prognostic biomarkers improved post-operative recurrence risk assessment in our internal validation study and may help guide decisions regarding adjuvant therapy.

KEY POINTS

In patients with non-metastatic renal cell carcinoma undergoing nephrectomy, CT-based radiomics combined with established clinical and pathological biomarkers improved recurrence risk assessment. Compared to a clinical base model, the combined risk model enabled superior clinical utility if used to guide decisions on adjuvant treatment.

摘要

目的

既往试验结果表明,仅有少数非转移性肾细胞癌(RCC)患者能从辅助治疗中获益。我们评估了在既定的临床病理生物标志物基础上加入基于CT的放射组学特征是否能改善辅助治疗决策的复发风险预测。

方法

这项回顾性研究纳入了453例接受肾切除术的非转移性RCC患者。使用术后生物标志物(年龄、分期、肿瘤大小和分级),以及术前CT上选择或未选择放射组学特征,训练Cox模型来预测无病生存期(DFS)。使用C统计量、校准和决策曲线分析(重复十折交叉验证)对模型进行评估。

结果

在多变量分析中,四个选定的放射组学特征之一(小波-HHL_glcm_ClusterShade)对DFS具有预后意义,调整后的风险比(HR)为0.44(p = 0.02),同时还有美国癌症联合委员会(AJCC)分期组(III期与I期,HR 2.90;p = 0.002)、4级(与1级相比,HR 8.90;p = 0.001)、年龄(每10岁HR 1.29;p = 0.03)和肿瘤大小(每厘米HR 1.13;p = 0.003)。联合临床-放射组学模型的辨别能力(C = 0.80)优于临床模型(C = 0.78;p < 0.001)。决策曲线分析显示,联合模型用于辅助治疗决策时具有净效益。在5年内疾病复发的示例性阈值概率≥25%时,使用联合模型与临床模型相比,相当于多治疗9例(每1000例评估患者中)未经治疗就会复发的患者(即真阳性预测),且假阳性预测没有增加。

结论

在既定的预后生物标志物基础上加入基于CT的放射组学特征,在我们的内部验证研究中改善了术后复发风险评估,并可能有助于指导辅助治疗决策。

关键点

在接受肾切除术的非转移性肾细胞癌患者中,基于CT的放射组学与既定的临床和病理生物标志物相结合,改善了复发风险评估。与临床基础模型相比,如果用于指导辅助治疗决策,联合风险模型具有更高的临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验