Suppr超能文献

使用甲酸铝Al(HCOO)₃(ALF)的非低温空气分离

Noncryogenic Air Separation Using Aluminum Formate Al(HCOO) (ALF).

作者信息

Mullangi Dinesh, Evans Hayden A, Yildirim Taner, Wang Yuxiang, Deng Zeyu, Zhang Zhaoqiang, Mai Thuc T, Wei Fengxia, Wang John, Hight Walker Angela R, Brown Craig M, Zhao Dan, Canepa Pieremanuele, Cheetham Anthony K

机构信息

Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore.

Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.

出版信息

J Am Chem Soc. 2023 May 3;145(17):9850-9856. doi: 10.1021/jacs.3c02100. Epub 2023 Apr 21.

Abstract

Separating oxygen from air to create oxygen-enriched gas streams is a process that is significant in both industrial and medical fields. However, the prominent technologies for creating oxygen-enriched gas streams are both energy and infrastructure intensive as they use cryogenic temperatures or materials that adsorb N from air. The latter method is less efficient than the methods that adsorb O directly. Herein, we show, via a combination of gas adsorption isotherms, gas breakthrough experiments, neutron and synchrotron X-ray powder diffraction, Raman spectroscopy, and computational studies, that the metal-organic framework, Al(HCOO) (ALF), which is easily prepared at low cost from commodity chemicals, exhibits substantial O adsorption and excellent time-dependent O/N selectivity in a range of 50-125 near dry ice/solvent (≈190 K) temperatures. The effective O adsorption with ALF at ≈190 K and ≈0.21 bar (the partial pressure of O in air) is ≈1.7 mmol/g, and at ice/salt temperatures (≈250 K), it is ≈0.3 mmol/g. Though the kinetics for full adsorption of O near 190 K are slower than at temperatures nearer 250 K, the kinetics for initial O adsorption are fast, suggesting that O separation using ALF with rapid temperature swings at ambient pressures is a potentially viable choice for low-cost air separation applications. We also present synthetic strategies for improving the kinetics of this family of compounds, namely, via Al/Fe solid solutions. To the best of our knowledge, ALF has the highest O/N sorption selectivity among MOF adsorbents without open metal sites as verified by co-adsorption experiments..

摘要

从空气中分离氧气以产生富氧气流是一个在工业和医学领域都很重要的过程。然而,用于产生富氧气流的主流技术在能源和基础设施方面都要求很高,因为它们使用低温或从空气中吸附氮气的材料。后一种方法比直接吸附氧气的方法效率更低。在此,我们通过气体吸附等温线、气体穿透实验、中子和同步加速器X射线粉末衍射、拉曼光谱以及计算研究表明,金属有机框架Al(HCOO)(ALF)可以很容易地由商品化学品低成本制备,在接近干冰/溶剂(≈190K)的50-125范围内表现出大量的氧气吸附和优异的随时间变化的氧/氮选择性。在≈190K和约0.21巴(空气中氧气的分压)下,ALF对氧气的有效吸附量约为1.7 mmol/g,在冰/盐温度(≈250K)下约为0.3 mmol/g。尽管在190K附近完全吸附氧气的动力学比在接近250K的温度下慢,但初始氧气吸附的动力学很快,这表明在环境压力下使用具有快速温度变化的ALF进行氧气分离对于低成本空气分离应用是一个潜在可行的选择。我们还提出了改善这类化合物动力学的合成策略,即通过铝/铁固溶体。据我们所知,通过共吸附实验验证,在没有开放金属位点的MOF吸附剂中,ALF具有最高的氧/氮吸附选择性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验