Suppr超能文献

一种新型的物联网自适应网络入侵检测系统。

A novel adaptive network intrusion detection system for internet of things.

机构信息

Electronics and Communication Engineering (ECE), Research Scholar, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India.

Electronics and Communication Engineering (ECE), Associate Professor, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India.

出版信息

PLoS One. 2023 Apr 21;18(4):e0283725. doi: 10.1371/journal.pone.0283725. eCollection 2023.

Abstract

Cyber-attack is one of the most challenging aspects of information technology. After the emergence of the Internet of Things, which is a vast network of sensors, technology started moving towards the Internet of Things (IoT), many IoT based devices interplay in most of the application wings like defence, healthcare, home automation etc., As the technology escalates, it gives an open platform for raiders to hack the network devices. Even though many traditional methods and Machine Learning algorithms are designed hot, still it "Have a Screw Loose" in detecting the cyber-attacks. To "Pull the Plug on" an effective "Intrusion Detection System (IDS)" is designed with "Deep Learning" technique. This research work elucidates the importance in detecting the cyber-attacks as "Anomaly" and "Normal". Fast Region-Based Convolution Neural Network (Fast R-CNN), a deep convolution network is implemented to develop an efficient and adaptable IDS. After hunting many research papers and articles, "Gradient Boosting" is found to be a powerful optimizer algorithm that gives us a best results when compared to other existing methods. This algorithm uses "Regression" tactics, a statistical technique to predict the continuous target variable that correlates between the variables. To create a structured valid dataset, a stacked model is made by implementing the two most popular dimensionality reduction techniques Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) algorithms. The brainwaves made us to hybridize Fast R-CNN and Gradient Boost Regression (GBR) which reduces the loss function, processing time and boosts the model's performance. All the above said methods are trained and tested with NIDS dataset V.10 2017. Finally, the "Decision Making" model decides the best result by giving an alert message. Our proposed model attains a high accuracy of 99.5% in detecting the "Cyber Attacks". The experiment results revealed that the effectiveness of our proposed model surpasses other deep neural network and machine learning techniques which have less accuracy.

摘要

网络攻击是信息技术中最具挑战性的方面之一。随着物联网的出现,物联网是一个庞大的传感器网络,技术开始向物联网(IoT)发展,许多基于物联网的设备在国防、医疗保健、家庭自动化等大多数应用领域相互作用。随着技术的升级,它为黑客攻击网络设备提供了一个开放的平台。尽管已经设计了许多传统方法和机器学习算法来解决这个问题,但在检测网络攻击方面仍然存在漏洞。为了设计一个有效的“入侵检测系统(IDS)”,我们采用“深度学习”技术来解决这个问题。这项研究工作说明了在检测网络攻击方面的重要性,包括异常和正常情况。快速区域卷积神经网络(Fast R-CNN)是一种深度卷积网络,用于开发高效且适应性强的 IDS。在研究了许多研究论文和文章之后,我们发现梯度提升是一种强大的优化算法,与其他现有方法相比,它可以提供最佳的结果。该算法使用“回归”策略,一种统计技术来预测与变量相关的连续目标变量。为了创建一个结构化的有效数据集,我们通过实现两种最流行的降维技术主成分分析(PCA)和奇异值分解(SVD)算法来构建一个堆叠模型。这些想法促使我们将 Fast R-CNN 和梯度提升回归(GBR)进行混合,从而减少损失函数、处理时间并提高模型的性能。所有上述方法都使用 NIDS 数据集 V.10 2017 进行训练和测试。最后,“决策”模型通过发出警报消息来决定最佳结果。我们提出的模型在检测“网络攻击”方面的准确率达到了 99.5%。实验结果表明,我们提出的模型的有效性超过了其他准确率较低的深度神经网络和机器学习技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d15a/10121003/b65f18002919/pone.0283725.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验