Department of Psychology, University of California, Berkeley, Berkeley, United States.
Western Institute for Neuroscience, Western University, London, Canada.
Elife. 2023 Apr 21;12:e81511. doi: 10.7554/eLife.81511.
While resting-state fMRI studies have provided a broad picture of the connectivity between human neocortex and cerebellum, the degree of convergence of cortical inputs onto cerebellar circuits remains unknown. Does each cerebellar region receive input from a single cortical area or convergent inputs from multiple cortical areas? Here, we use task-based fMRI data to build a range of cortico-cerebellar connectivity models, each allowing for a different degree of convergence. We compared these models by their ability to predict cerebellar activity patterns for novel Task Sets. Models that allow some degree of convergence provided the best predictions, arguing for convergence of multiple cortical inputs onto single cerebellar voxels. Importantly, the degree of convergence varied across the cerebellum with the highest convergence observed in areas linked to language, working memory, and social cognition. These findings suggest important differences in the way that functional subdivisions of the cerebellum support motor and cognitive function.
虽然静息态 fMRI 研究已经提供了人类大脑新皮层和小脑之间连接的广泛图景,但皮质输入到小脑回路的汇聚程度尚不清楚。每个小脑区域是否都接收来自单个皮质区域的输入,还是来自多个皮质区域的汇聚输入?在这里,我们使用基于任务的 fMRI 数据来构建一系列皮质-小脑连接模型,每个模型都允许不同程度的汇聚。我们通过它们预测新任务集的小脑活动模式的能力来比较这些模型。允许一定程度汇聚的模型提供了最佳预测,这表明多个皮质输入汇聚到单个小脑体素上。重要的是,汇聚程度在小脑中存在差异,与语言、工作记忆和社会认知相关的区域观察到的汇聚程度最高。这些发现表明,小脑的功能细分在支持运动和认知功能的方式上存在重要差异。