Suppr超能文献

Rema-Net:一种用于快速皮肤病变分割的高效多注意力卷积神经网络。

Rema-Net: An efficient multi-attention convolutional neural network for rapid skin lesion segmentation.

机构信息

School of Information Science and Engineering, Henan University of Technology, Zhengzhou City, Henan Province, 450001, China.

School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou City, Henan Province, 450001, China; Key Laboratory of Grain Information Processing and Control, Ministry of Education, Zhengzhou City, Henan Province, 450001, China.

出版信息

Comput Biol Med. 2023 Jun;159:106952. doi: 10.1016/j.compbiomed.2023.106952. Epub 2023 Apr 17.

Abstract

For clinical treatment, the accurate segmentation of lesions from dermoscopic images is extremely valuable. Convolutional neural networks (such as U-Net and its numerous variants) have become the main methods for skin lesion segmentation in recent years. However, because these methods frequently have a large number of parameters and complicated algorithm structures, which results in high hardware requirements and long training time, it is difficult to effectively use them for fast training and segmentation tasks. For this reason, we proposed an efficient multi-attention convolutional neural network (Rema-Net) for rapid skin lesion segmentation. The down-sampling module of the network only uses a convolutional layer and a pooling layer, with spatial attention added to improve useful features. We also designed skip-connections between the down-sampling and up-sampling parts of the network, and used reverse attention operation on the skip-connections to strengthen segmentation performance of the network. We conducted extensive experiments on five publicly available datasets to validate the effectiveness of our method, including the ISIC-2016, ISIC-2017, ISIC-2018, PH2, and HAM10000 datasets. The results show that the proposed method reduced the number of parameters by nearly 40% when compared with U-Net. Furthermore, the segmentation metrics are significantly better than some previous methods, and the predictions are closer to the real lesion.

摘要

对于临床治疗来说,准确地从皮肤镜图像中分割病变区域是非常有价值的。卷积神经网络(如 U-Net 及其众多变体)已成为近年来皮肤病变分割的主要方法。然而,由于这些方法通常具有大量的参数和复杂的算法结构,这导致了较高的硬件要求和较长的训练时间,因此很难有效地用于快速训练和分割任务。为此,我们提出了一种用于快速皮肤病变分割的高效多注意力卷积神经网络(Rema-Net)。网络的下采样模块仅使用卷积层和池化层,并添加空间注意力来提高有用特征。我们还在网络的下采样和上采样部分之间设计了跳过连接,并在跳过连接上使用反向注意力操作来增强网络的分割性能。我们在五个公开可用的数据集上进行了广泛的实验,验证了我们方法的有效性,包括 ISIC-2016、ISIC-2017、ISIC-2018、PH2 和 HAM10000 数据集。结果表明,与 U-Net 相比,我们的方法将参数数量减少了近 40%。此外,分割指标明显优于一些先前的方法,并且预测结果更接近真实病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验