Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea.
Research Institute of Industrial Science and Technology (RIST), POSCO Global R&D Center, 100 Songdogwahak-ro, Yeonsu-gu, Incheon, 21985, Republic of Korea.
Adv Sci (Weinh). 2023 Jun;10(18):e2300615. doi: 10.1002/advs.202300615. Epub 2023 Apr 23.
Low-cost Fe can be used for forming cation-disordered rocksalt Li-excess (DRX) materials instead of high-cost d -species and then the Fe-based DRX can be promising electrode materials because they can theoretically achieve high capacity, resulting from additional oxygen redox reaction and stable cation-disordered structure. However, Fe-based DRX materials suffer from large voltage hysteresis, low electrochemical activity, and poor cyclability, so it is highly challenging to utilize them as practical electrode materials for a cell. Here, novel high-capacity Li-Fe-Ti-Mo electrode materials (LFTMO) with high average discharge voltage and reasonable stability are reported. The effect of Ti/Mo on electrochemical reactions in Fe-based DRX materials (LFTMO) is studied by controlling its composition ratio and using techniques for analyzing the local environment to find the key factors that improve its activity. It is found out that the introduction of appropriate quantity of redox-active Mo to Fe-based DRX materials can help stabilize the oxygen redox reaction via changing a local structure and can suppress a Fe redox reaction, which can cause poor performance. The understandings will help develop high capacity and long cyclability Fe-based DRX electrode materials.
低成本的 Fe 可以用来替代高成本的 d 型物质,形成阳离子无序岩盐富锂(DRX)材料,而基于 Fe 的 DRX 有望成为有前途的电极材料,因为它们可以通过额外的氧氧化还原反应和稳定的阳离子无序结构来实现高容量。然而,基于 Fe 的 DRX 材料存在大的电压滞后、低电化学活性和差的循环稳定性等问题,因此将其用作电池的实用电极材料极具挑战性。在这里,我们报道了具有高平均放电电压和合理稳定性的新型高容量 Li-Fe-Ti-Mo 电极材料(LFTMO)。通过控制其组成比并使用分析局部环境的技术,研究了 Ti/Mo 对 Fe 基 DRX 材料(LFTMO)电化学反应的影响,以找到提高其活性的关键因素。结果表明,适量的氧化还原活性 Mo 引入到 Fe 基 DRX 材料中,可以通过改变局部结构来帮助稳定氧氧化还原反应,并抑制导致性能不佳的 Fe 氧化还原反应。这些认识将有助于开发具有高容量和长循环稳定性的 Fe 基 DRX 电极材料。