Suppr超能文献

混合离子-电子导体中聚集体和微观结构对电化学晶体管中电荷输运的作用。

Role of aggregates and microstructure of mixed-ionic-electronic-conductors on charge transport in electrochemical transistors.

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

Department of Chemistry, Oxford University, Oxford, OX1 3TA, UK.

出版信息

Mater Horiz. 2023 Jul 3;10(7):2568-2578. doi: 10.1039/d3mh00017f.

Abstract

Synthetic efforts have delivered a library of organic mixed ionic-electronic conductors (OMIECs) with high performance in electrochemical transistors. The most promising materials are redox-active conjugated polymers with hydrophilic side chains that reach high transconductances in aqueous electrolytes due to volumetric electrochemical charging. Current approaches to improve transconductance and device stability focus mostly on materials chemistry including backbone and side chain design. However, other parameters such as the initial microstructure and microstructural rearrangements during electrochemical charging are equally important and are influenced by backbone and side chain chemistry. In this study, we employ a polymer system to investigate the fundamental electrochemical charging mechanisms of OMIECs. We couple electronic charge transport measurements and spectroelectrochemistry with X-ray scattering electrochemical charging experiments and find that polymer chains planarize during electrochemical charging. Our work shows that the most effective conductivity modulation is related to electrochemical accessibility of well-ordered, interconnected aggregates that host high mobility electronic charge carriers. Electrochemical stress cycling induces microstructural changes, but we find that these aggregates can largely maintain order, providing insights on the structural stability and reversibility of electrochemical charging in these systems. This work shows the importance of material design for creating OMIECs that undergo structural rearrangements to accommodate ions and electronic charge carriers during which percolating networks are formed for efficient electronic charge transport.

摘要

合成工作已经提供了一系列具有高性能电化学晶体管的有机混合离子-电子导体(OMIEC)。最有前途的材料是具有亲水性侧链的氧化还原活性共轭聚合物,由于体积电化学充电,它们在水性电解质中达到高跨导。提高跨导和器件稳定性的当前方法主要集中在材料化学上,包括主链和侧链设计。然而,其他参数,如初始微观结构和电化学充电过程中的微结构重排,同样重要,并受主链和侧链化学的影响。在这项研究中,我们采用聚合物体系来研究 OMIEC 的基本电化学充电机制。我们将电子电荷输运测量和光谱电化学与 X 射线散射电化学充电实验相结合,发现聚合物链在电化学充电过程中变得平面化。我们的工作表明,最有效的电导率调制与电化学可及性的有序、相互连接的聚集体有关,这些聚集体中承载着高迁移率的电子电荷载流子。电化学应力循环会引起微结构的变化,但我们发现这些聚集体可以在很大程度上保持有序,这为这些体系中电化学充电的结构稳定性和可逆性提供了一些见解。这项工作表明,材料设计对于创建经历结构重排以在其中形成用于有效电子电荷输运的贯穿网络的 OMIEC 非常重要,在结构重排过程中,离子和电子电荷载流子可以被容纳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验