Lobato Júlio Cesar Mendes, Arouche Tiago da Silva, Nero Jordan Del, Filho TarcisoAndrade, Borges Rosivaldo Dos Santos, Neto Antonio Maia de Jesus Chaves
Laboratory of Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, C. P. 479, 66075-110, Belém, PA, Brazil.
Proderna, Federal University of Pará, C. P. 479, 66075-110, Belém, PA, Brazil.
J Mol Struct. 2023 Aug 15;1286:135604. doi: 10.1016/j.molstruc.2023.135604. Epub 2023 Apr 18.
Molecular modeling techniques are used to describe the process of interaction between nanotubes and the main structures of the Covid-19 virus: the envelope protein, the main protease, and the Spike glycoprotein. Molecular docking studies show that the ligands have interaction characteristics capable of adsorbing the structures. Molecular dynamics simulations provide information on the mean squared deviation of atomic positions between 0.5 and 3.0 Å. The Gibbs free energy model and solvent accessible surface area approaches are used. Through the results obtained through molecular dynamics simulations, it is noted that the zig-zag nanotube prefers to interact with E-pro, M-pro, and S-gly, respectively. Molecular couplings and free energy showed that the S-gly active site residues strongly interact with zigzag, chiral, and armchair nanotubes, in this order. The interactions demonstrated in this manuscript may predict some promising candidates for virus antagonists, which may be confirmed through experimental approaches.
分子建模技术用于描述纳米管与新冠病毒主要结构(包膜蛋白、主要蛋白酶和刺突糖蛋白)之间的相互作用过程。分子对接研究表明,这些配体具有能够吸附这些结构的相互作用特性。分子动力学模拟提供了关于原子位置均方根偏差在0.5至3.0埃之间的信息。使用了吉布斯自由能模型和溶剂可及表面积方法。通过分子动力学模拟获得的结果表明,锯齿形纳米管分别更倾向于与包膜蛋白、主要蛋白酶和刺突糖蛋白相互作用。分子偶联和自由能表明,刺突糖蛋白活性位点残基与锯齿形、手性和扶手椅形纳米管的相互作用依次增强。本手稿中展示的相互作用可能预示着一些有前景的病毒拮抗剂候选物,这可能通过实验方法得到证实。