Suppr超能文献

评估肿瘤和非疾病组织基因表达谱在癌细胞系和患者来源异种移植中的重现性。

Evaluating cancer cell line and patient-derived xenograft recapitulation of tumor and non-diseased tissue gene expression profiles .

机构信息

The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.

出版信息

bioRxiv. 2023 Jun 15:2023.04.11.536431. doi: 10.1101/2023.04.11.536431.

Abstract

Preclinical models like cancer cell lines and patient-derived xenografts (PDXs) are vital for studying disease mechanisms and evaluating treatment options. It is essential that they accurately recapitulate the disease state of interest to generate results that will translate in the clinic. Prior studies have demonstrated that preclinical models do not recapitulate all biological aspects of human tissues, particularly with respect to the tissue of origin gene expression signatures. Therefore, it is critical to assess how well preclinical model gene expression profiles correlate with human cancer tissues to inform preclinical model selection and data analysis decisions. Here we evaluated how well preclinical models recapitulate human cancer and non-diseased tissue gene expression patterns with respect to the full gene expression profile as well as subsetting by the most variable genes, genes significantly correlated with tumor purity, and tissue-specific genes by using publicly available gene expression profiles across multiple sources. We found that using the full gene set improves correlations between preclinical model and tissue global gene expression profiles, confirmed that GBM PDX global gene expression correlation to GBM tumor global gene expression outperforms GBM cell line to GBM tumor global gene expression correlations, and demonstrated that preclinical models in our study often failed to reproduce tissue-specific expression. While including additional genes for global gene expression comparison between cell lines and tissues decreases the overall correlation, it improves the relative rank between a cell line and its tissue of origin compared to other tissues. Our findings underscore the importance of using the full gene expression set measured when comparing preclinical models and tissues and confirm that tissue-specific patterns are better preserved in GBM PDX models than in GBM cell lines. Future studies can build on these findings to determine the specific pathways and gene sets recapitulated by particular preclinical models to facilitate model selection for a given study design or goal.

摘要

临床前模型,如癌细胞系和患者来源的异种移植物(PDX),对于研究疾病机制和评估治疗方案至关重要。它们准确地再现感兴趣的疾病状态以产生可在临床上转化的结果是至关重要的。先前的研究表明,临床前模型不能再现人类组织的所有生物学方面,特别是在组织起源基因表达特征方面。因此,评估临床前模型的基因表达谱与人类癌症组织的相关性以告知临床前模型选择和数据分析决策至关重要。在这里,我们评估了临床前模型在全基因表达谱以及按最可变基因、与肿瘤纯度显著相关的基因和组织特异性基因进行亚组化方面,在多大程度上再现了人类癌症和非疾病组织的基因表达模式。我们发现,使用全基因集可以提高临床前模型和组织整体基因表达谱之间的相关性,证实了 GBM PDX 整体基因表达与 GBM 肿瘤整体基因表达的相关性优于 GBM 细胞系与 GBM 肿瘤整体基因表达的相关性,并表明我们研究中的临床前模型通常未能再现组织特异性表达。虽然在细胞系和组织之间进行全局基因表达比较时添加更多基因会降低整体相关性,但它可以提高细胞系与其组织起源之间的相对等级,而不是与其他组织的等级。我们的研究结果强调了在比较临床前模型和组织时使用全基因表达集的重要性,并证实了组织特异性模式在 GBM PDX 模型中比在 GBM 细胞系中更好地保存。未来的研究可以在此基础上进一步确定特定临床前模型再现的特定途径和基因集,以促进特定研究设计或目标的模型选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/768e/10282695/100bc889f00f/nihpp-2023.04.11.536431v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验