Hasegawa Eva H, Farr Gist H, Maves Lisa
Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA.
Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
J Dev Biol. 2023 Mar 28;11(2):16. doi: 10.3390/jdb11020016.
Zebrafish are a powerful animal model for small molecule screening. Small molecule treatments of zebrafish embryos usually require that the chorion, an acellular envelope enclosing the embryo, is removed in order for chemical compounds to access the embryo from the bath medium. For large-scale studies requiring hundreds of embryos, manual dechorionation, using forceps, can be a time-consuming and limiting process. Pronase is a non-specific protease that is widely used as an enzymatic alternative for dechorionating zebrafish embryos. However, whether pronase treatments alter the effects of subsequent small molecule treatments has not been addressed. Here, we provide a detailed protocol for large-scale pronase dechorionation of zebrafish embryos. We tested whether pronase treatment can influence the efficacy of drug treatments in zebrafish embryos. We used a zebrafish model for Duchenne muscular dystrophy (DMD) to investigate whether the efficacies of trichostatin-A (TSA) or salermide + oxamflatin, small molecule inhibitors known to ameliorate the zebrafish muscle degeneration phenotype, are significantly altered when embryos are treated with pronase versus manual dechorionation. We also tested the effects of pronase on the ability of the anthracycline cancer drug doxorubicin to induce cardiotoxicity in zebrafish embryos. When comparing pronase- versus forceps-dechorionated embryos used in these small molecule treatments, we found no appreciable effects of pronase on animal survival or on the effects of the small molecules. The significant difference that was detected was a small improvement in the ability of salermide + oxamflatin to ameliorate the phenotype in pronase-treated embryos when compared with manual dechorionation. Our study supports the use of pronase treatment as a dechorionation method for zebrafish drug screening experiments.
斑马鱼是用于小分子筛选的强大动物模型。对斑马鱼胚胎进行小分子处理通常要求去除绒毛膜,即包裹胚胎的无细胞包膜,以便化合物从浴液介质进入胚胎。对于需要数百个胚胎的大规模研究,使用镊子进行手动去绒毛膜是一个耗时且有局限性的过程。链霉蛋白酶是一种非特异性蛋白酶,被广泛用作斑马鱼胚胎去绒毛膜的酶促替代方法。然而,链霉蛋白酶处理是否会改变后续小分子处理的效果尚未得到探讨。在这里,我们提供了一个详细的方案,用于大规模链霉蛋白酶去绒毛膜处理斑马鱼胚胎。我们测试了链霉蛋白酶处理是否会影响斑马鱼胚胎中药物治疗的效果。我们使用杜氏肌营养不良症(DMD)的斑马鱼模型来研究,当胚胎用链霉蛋白酶处理与手动去绒毛膜处理相比时,已知可改善斑马鱼肌肉退化表型的小分子抑制剂曲古抑菌素A(TSA)或沙立度胺+奥沙氟汀的疗效是否会显著改变。我们还测试了链霉蛋白酶对蒽环类抗癌药物阿霉素诱导斑马鱼胚胎心脏毒性能力的影响。在比较这些小分子处理中使用链霉蛋白酶处理与镊子去绒毛膜处理的胚胎时,我们发现链霉蛋白酶对动物存活率或小分子的效果没有明显影响。检测到的显著差异是,与手动去绒毛膜处理相比,沙立度胺+奥沙氟汀改善链霉蛋白酶处理胚胎表型的能力有小幅提高。我们的研究支持使用链霉蛋白酶处理作为斑马鱼药物筛选实验的去绒毛膜方法。