Suppr超能文献

深海源定位的差频相干匹配自混合处理。

Difference frequency coherent matched autoproduct processing for source localization in deep ocean.

机构信息

State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

School of Ocean Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, People's Republic of China.

出版信息

J Acoust Soc Am. 2023 Apr 1;153(4):2131. doi: 10.1121/10.0017788.

Abstract

Matched autoproduct processing (MAP) refers to a matched field processing (MFP) style array signal processing technique for passive source localization, which interrogates frequency-difference autoproduct instead of genuine acoustic pressure. Due to frequency downshifting, MAP is less sensitive to environmental mismatch, but it suffers from low spatial resolution and a low peak-to-sidelobe ratio of ambiguity surface. These source localization metrics are herein improved with coherent approaches. Specifically, the coherent normalized MFP is extended to coherent matched autoproduct processing (CMAP), a difference frequency coherent algorithm that exploits correlations among the autoproducts at various difference frequencies and eliminates the phase factor of the source spectrum for passive source localization. Phase-only coherent matched autoproduct processing is a CMAP derivation technique that only uses phase information. Through simulations in a Munk sound-speed profile environment, sensitivity analysis in the South China Sea environment, and high signal-to-noise ratio experimental measurements, these two algorithms are validated as compared to the conventional MFP and incoherent MAP. Simulation investigations demonstrate that difference frequency coherent algorithms can suppress sidelobes while simultaneously enhancing the localization resolution and robustness. The experimental results generally support the findings of the simulations.

摘要

匹配自产品处理 (MAP) 是一种用于无源声源定位的匹配场处理 (MFP) 风格的阵列信号处理技术,它检测频率差自产品而不是真实声压。由于频率下变频,MAP 对环境失配的敏感性降低,但它的空间分辨率低,模糊表面的峰值与旁瓣比低。这些声源定位指标通过相干方法得到了改善。具体来说,相干归一化 MFP 扩展到相干匹配自产品处理 (CMAP),这是一种差频相干算法,利用各种差频自产品之间的相关性,并消除源谱的相位因子,用于无源声源定位。仅使用相位信息的相控阵相干匹配自产品处理是 CMAP 的一种衍生技术。通过在明克声速剖面环境中的仿真、南海环境中的灵敏度分析以及高信噪比的实验测量,与传统的 MFP 和非相干 MAP 相比,对这两种算法进行了验证。仿真研究表明,差频相干算法可以抑制旁瓣,同时提高定位分辨率和鲁棒性。实验结果普遍支持仿真结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验